""" AutoTrain Gradio MCP Server - All-in-One This single Gradio app: 1. Provides a web interface for managing AutoTrain jobs 2. Automatically exposes MCP tools at /gradio_api/mcp/sse 3. Handles all AutoTrain operations directly (no FastAPI needed) """ import os import json import uuid import threading from datetime import datetime from typing import List, Dict, Any import socket import gradio as gr import pandas as pd import wandb from autotrain.project import AutoTrainProject from autotrain.params import ( LLMTrainingParams, TextClassificationParams, ImageClassificationParams, ) # Simple JSON-based storage (replace with SQLite if needed) RUNS_FILE = "training_runs.json" WANDB_PROJECT = os.environ.get("WANDB_PROJECT", "autotrain-mcp") def load_runs() -> List[Dict[str, Any]]: """Load training runs from JSON file""" if os.path.exists(RUNS_FILE): try: with open(RUNS_FILE, "r") as f: return json.load(f) except (json.JSONDecodeError, IOError): return [] return [] def save_runs(runs: List[Dict[str, Any]]): """Save training runs to JSON file""" with open(RUNS_FILE, "w") as f: json.dump(runs, f, indent=2) def get_status_emoji(status: str) -> str: """Get emoji for training status""" emoji_map = { "pending": "ā³", "running": "šŸƒ", "completed": "āœ…", "failed": "āŒ", "cancelled": "ā¹ļø", } return emoji_map.get(status.lower(), "ā“") def create_autotrain_params( task: str, base_model: str, project_name: str, dataset_path: str, epochs: int, batch_size: int, learning_rate: float, push_to_hub: bool, hub_repo_id: str = "", **kwargs, ): """Create AutoTrain parameter object based on task type""" # Hub configuration hub_config = {} if push_to_hub: hub_config = { "push_to_hub": True, "username": os.environ.get("HF_USERNAME", ""), "token": os.environ.get("HF_TOKEN", ""), } # If custom repo_id is provided, use it; otherwise use project_name if hub_repo_id: hub_config["repo_id"] = hub_repo_id common_params = { "model": base_model, "project_name": project_name, "data_path": dataset_path, "train_split": kwargs.get("train_split", "train"), "valid_split": kwargs.get("valid_split"), "epochs": epochs, "batch_size": batch_size, "lr": learning_rate, "log": "wandb", # Required defaults "warmup_ratio": 0.1, "gradient_accumulation": 1, "optimizer": "adamw_torch", "scheduler": "linear", "weight_decay": 0.01, "max_grad_norm": 1.0, "seed": 42, "logging_steps": 10, "auto_find_batch_size": False, "mixed_precision": "no", "save_total_limit": 1, "eval_strategy": "epoch", **hub_config, # Add hub configuration } if task == "text-classification": return TextClassificationParams( **common_params, text_column=kwargs.get("text_column", "text"), target_column=kwargs.get("target_column", "label"), max_seq_length=kwargs.get("max_seq_length", 128), early_stopping_patience=3, early_stopping_threshold=0.01, ) elif task.startswith("llm-"): trainer_map = { "llm-sft": "sft", "llm-dpo": "dpo", "llm-orpo": "orpo", "llm-reward": "reward", } # For LLM tasks, exclude some parameters that don't apply llm_params = { k: v for k, v in common_params.items() if k not in ["early_stopping_patience", "early_stopping_threshold"] } return LLMTrainingParams( **llm_params, text_column=kwargs.get("text_column", "messages"), block_size=kwargs.get("block_size", 2048), peft=kwargs.get("use_peft", True), quantization=kwargs.get("quantization", "int4"), trainer=trainer_map[task], chat_template="tokenizer", # LLM-specific defaults add_eos_token=True, model_max_length=2048, padding="right", use_flash_attention_2=False, disable_gradient_checkpointing=False, target_modules="all-linear", merge_adapter=False, lora_r=16, lora_alpha=32, lora_dropout=0.05, model_ref=None, dpo_beta=0.1, max_prompt_length=512, max_completion_length=1024, prompt_text_column="prompt", rejected_text_column="rejected", unsloth=False, distributed_backend="accelerate", ) elif task == "image-classification": return ImageClassificationParams( **common_params, image_column=kwargs.get("image_column", "image"), target_column=kwargs.get("target_column", "label"), ) else: raise ValueError(f"Unsupported task type: {task}") def run_training_background(run_id: str, params: Any, backend: str): """Run training job in background thread""" runs = load_runs() # Update status to running for run in runs: if run["run_id"] == run_id: run["status"] = "running" run["started_at"] = datetime.utcnow().isoformat() break save_runs(runs) try: # Set W&B environment variables for AutoTrain to use os.environ["WANDB_PROJECT"] = WANDB_PROJECT print(f"Starting real training for run {run_id}") print(f"Model: {params.model}") print(f"Dataset: {params.data_path}") print(f"Backend: {backend}") # Create AutoTrain project - this will handle W&B internally project = AutoTrainProject(params=params, backend=backend, process=True) # Actually run the training - this blocks until completion print(f"Executing training job for run {run_id}...") result = project.create() print(f"Training completed successfully for run {run_id}") print(f"Result: {result}") # Get the actual W&B run URL after training starts wandb_url = f"https://wandb.ai/{WANDB_PROJECT}" try: if wandb.run is not None: wandb_url = wandb.run.url print(f"Got actual W&B URL: {wandb_url}") else: print("No active W&B run found, using default URL") except Exception as e: print(f"Could not get W&B URL: {e}") # Update with actual W&B URL runs = load_runs() for run in runs: if run["run_id"] == run_id: run["wandb_url"] = wandb_url break save_runs(runs) # Update status to completed runs = load_runs() for run in runs: if run["run_id"] == run_id: run["status"] = "completed" run["completed_at"] = datetime.utcnow().isoformat() if result: run["result"] = str(result) break save_runs(runs) except Exception as e: print(f"Training failed for run {run_id}: {str(e)}") import traceback traceback.print_exc() # Update status to failed runs = load_runs() for run in runs: if run["run_id"] == run_id: run["status"] = "failed" run["error_message"] = str(e) run["completed_at"] = datetime.utcnow().isoformat() break save_runs(runs) # MCP Tool Functions (these automatically become MCP tools) def start_training_job( task: str = "text-classification", project_name: str = "test-project", base_model: str = "distilbert-base-uncased", dataset_path: str = "imdb", epochs: str = "1", batch_size: str = "8", learning_rate: str = "2e-5", backend: str = "local", push_to_hub: str = "false", hub_repo_id: str = "", ) -> str: """ Start a new AutoTrain training job. Args: task: Type of training task (text-classification, llm-sft, llm-dpo, llm-orpo, image-classification) project_name: Name for the training project base_model: Base model from Hugging Face Hub (e.g., distilbert-base-uncased) dataset_path: Dataset path or HF dataset name (e.g., imdb) epochs: Number of training epochs (default: 3) batch_size: Training batch size (default: 16) learning_rate: Learning rate for training (default: 2e-5) backend: Training backend to use (default: local) push_to_hub: Whether to push final model to Hub (true/false) hub_repo_id: Custom repository ID for Hub (optional) Returns: Status message with run ID and details """ try: # Convert string parameters epochs_int = int(epochs) batch_size_int = int(batch_size) learning_rate_float = float(learning_rate) push_to_hub_bool = push_to_hub.lower() == "true" # Generate run ID run_id = str(uuid.uuid4()) # Create run record run_data = { "run_id": run_id, "project_name": project_name, "task": task, "base_model": base_model, "dataset_path": dataset_path, "status": "pending", "created_at": datetime.utcnow().isoformat(), "updated_at": datetime.utcnow().isoformat(), "push_to_hub": push_to_hub_bool, "hub_repo_id": hub_repo_id, "config": { "task": task, "epochs": epochs_int, "batch_size": batch_size_int, "learning_rate": learning_rate_float, "backend": backend, "push_to_hub": push_to_hub_bool, "hub_repo_id": hub_repo_id, }, } # Save to storage runs = load_runs() runs.append(run_data) save_runs(runs) # Create AutoTrain parameters params = create_autotrain_params( task=task, base_model=base_model, project_name=project_name, dataset_path=dataset_path, epochs=epochs_int, batch_size=batch_size_int, learning_rate=learning_rate_float, push_to_hub=push_to_hub_bool, hub_repo_id=hub_repo_id, ) # Start training in background thread = threading.Thread( target=run_training_background, args=(run_id, params, backend) ) thread.daemon = True thread.start() # Build result message result_msg = f"""āœ… Training job submitted successfully! Run ID: {run_id} Project: {project_name} Task: {task} Model: {base_model} Dataset: {dataset_path} Configuration: • Epochs: {epochs} • Batch Size: {batch_size} • Learning Rate: {learning_rate} • Backend: {backend}""" if push_to_hub_bool: final_repo = hub_repo_id if hub_repo_id else project_name result_msg += f""" • Push to Hub: āœ… Enabled • Repository: {final_repo} • Requires: HF_USERNAME and HF_TOKEN environment variables""" else: result_msg += "\n• Push to Hub: āŒ Disabled" result_msg += """ šŸ”— Monitor progress: • Gradio UI: http://localhost:7860 • W&B tracking will be available once training starts šŸ’” Use get_training_runs() to check status""" return result_msg except Exception as e: return f"āŒ Error submitting job: {str(e)}" def get_training_runs(limit: str = "20", status: str = "") -> str: """ Get list of training runs with their status and details. Args: limit: Maximum number of runs to return (default: 20) status: Filter by run status (pending, running, completed, failed, cancelled) Returns: Formatted list of training runs with status and links """ try: runs = load_runs() # Filter by status if provided if status: runs = [run for run in runs if run.get("status") == status] # Apply limit runs = runs[-int(limit) :] if not runs: return "No training runs found. Start a new training job to see it here!" runs_text = f"šŸ“Š Training Runs (showing {len(runs)}):\n\n" for run in reversed(runs): # Show newest first status_emoji = get_status_emoji(run["status"]) # Format run display with line break run_display = ( f"{status_emoji} **{run['project_name']}** ({run['run_id'][:8]}...)" ) runs_text += f"{run_display}\n" runs_text += f" Task: {run['task']}\n" runs_text += f" Model: {run['base_model']}\n" runs_text += f" Status: {run['status'].title()}\n" runs_text += f" Created: {run['created_at']}\n" if run.get("wandb_url"): runs_text += f" šŸ”— W&B: {run['wandb_url']}\n" if run.get("error_message"): runs_text += f" āŒ Error: {run['error_message']}\n" runs_text += "\n" return runs_text except Exception as e: return f"āŒ Error fetching runs: {str(e)}" def get_run_details(run_id: str) -> str: """ Get detailed information about a specific training run. Args: run_id: ID of the training run (can be partial ID) Returns: Detailed run information including config and status """ try: runs = load_runs() # Find run by full or partial ID found_run = None for run in runs: if run["run_id"] == run_id or run["run_id"].startswith(run_id): found_run = run break if not found_run: return f"āŒ Training run {run_id} not found" run = found_run details_text = f"""šŸ“‹ Training Run Details **Run ID:** {run["run_id"]} **Project:** {run["project_name"]} **Task:** {run["task"]} **Model:** {run["base_model"]} **Dataset:** {run["dataset_path"]} **Status:** {run["status"].title()} **Timestamps:** • Created: {run["created_at"]} • Updated: {run.get("updated_at", "N/A")}""" if run.get("started_at"): details_text += f"\n• Started: {run['started_at']}" if run.get("completed_at"): details_text += f"\n• Completed: {run['completed_at']}" if run.get("wandb_url"): details_text += f"\n\nšŸ”— **W&B Dashboard:** {run['wandb_url']}" if run.get("error_message"): details_text += f"\n\nāŒ **Error:** {run['error_message']}" if run.get("config"): config = run["config"] details_text += "\n\nāš™ļø **Training Configuration:**" details_text += f"\n• Epochs: {config.get('epochs')}" details_text += f"\n• Batch Size: {config.get('batch_size')}" details_text += f"\n• Learning Rate: {config.get('learning_rate')}" details_text += f"\n• Backend: {config.get('backend')}" # Hub configuration if config.get("push_to_hub"): details_text += "\n• Push to Hub: āœ… Enabled" if config.get("hub_repo_id"): details_text += f"\n• Hub Repository: {config.get('hub_repo_id')}" else: details_text += ( f"\n• Hub Repository: {run['project_name']} (default)" ) else: details_text += "\n• Push to Hub: āŒ Disabled" return details_text except Exception as e: return f"āŒ Error fetching run details: {str(e)}" def get_task_recommendations( task: str = "text-classification", dataset_size: str = "medium" ) -> str: """ Get training recommendations for a specific task type. Args: task: Task type (text-classification, llm-sft, image-classification) dataset_size: Size of dataset (small, medium, large) Returns: Recommended models, parameters, and best practices """ recommendations = { "text-classification": { "models": ["distilbert-base-uncased", "bert-base-uncased", "roberta-base"], "params": {"batch_size": 16, "learning_rate": 2e-5, "epochs": 3}, "backends": ["local", "spaces-t4-small"], "notes": [ "Good for sentiment analysis", "Works well with IMDB, AG News datasets", ], }, "llm-sft": { "models": [ "microsoft/DialoGPT-medium", "HuggingFaceTB/SmolLM2-1.7B-Instruct", ], "params": {"batch_size": 1, "learning_rate": 1e-5, "epochs": 3}, "backends": ["spaces-t4-medium", "spaces-a10g-large"], "notes": ["Use PEFT for efficiency", "Ensure proper chat formatting"], }, "image-classification": { "models": ["google/vit-base-patch16-224", "microsoft/resnet-50"], "params": {"batch_size": 32, "learning_rate": 2e-5, "epochs": 5}, "backends": ["local", "spaces-t4-small"], "notes": ["Ensure images are preprocessed", "Works with CIFAR, ImageNet"], }, } rec = recommendations.get( task, { "models": [], "params": {}, "backends": ["local"], "notes": ["No specific recommendations available"], }, ) rec_text = f"""šŸŽÆ Training Recommendations for {task.title()} \ ({dataset_size} dataset) **Recommended Models:** {chr(10).join(f"• {model}" for model in rec["models"])} **Recommended Parameters:** {chr(10).join(f"• {k}: {v}" for k, v in rec["params"].items())} **Backend Suggestions:** {chr(10).join(f"• {backend}" for backend in rec["backends"])} **Best Practices:** {chr(10).join(f"• {note}" for note in rec["notes"])}""" return rec_text def get_system_status(random_string: str = "") -> str: """ Get AutoTrain system status and capabilities. Returns: System status, available tasks, backends, and statistics """ try: runs = load_runs() # Calculate stats total_runs = len(runs) running_runs = len([r for r in runs if r.get("status") == "running"]) completed_runs = len([r for r in runs if r.get("status") == "completed"]) failed_runs = len([r for r in runs if r.get("status") == "failed"]) wandb_api_status = ( "āœ… Configured" if os.environ.get("WANDB_API_KEY") else "āŒ Missing" ) wandb_metrics_status = ( "āœ… Enabled" if os.environ.get("WANDB_API_KEY") else "āŒ System metrics only" ) status_text = f"""## āš™ļø System Status ### šŸ“Š Run Statistics | Metric | Count | |--------|-------| | **Server Status** | āœ… Running | | **Total Runs** | {total_runs} | | **Active Runs** | {running_runs} | | **Completed Runs** | {completed_runs} | | **Failed Runs** | {failed_runs} | ### šŸ’” Access Points | Service | URL | |---------|-----| | **Gradio UI** | http://SPACE_URL | | **MCP Server** | http://SPACE_URL/gradio_api/mcp/sse | | **MCP Schema** | http://SPACE_URL/gradio_api/mcp/schema | ### šŸ› ļø W&B Integration | Component | Status | |-----------|--------| | **Project** | {WANDB_PROJECT} | | **API Key** | {wandb_api_status} | | **Training Metrics** | {wandb_metrics_status} | šŸ’” **Note:** Set WANDB_API_KEY for complete training metrics logging""" return status_text except Exception as e: return f"āŒ Error getting system status: {str(e)}" def refresh_data(random_string: str = "") -> str: """Refresh data for UI updates""" return "Data refreshed successfully" def load_initial_data(random_string: str = "") -> str: """Load initial data for the application""" return "Initial data loaded successfully" # Web UI Functions def fetch_runs_for_ui(): """Fetch runs for the web interface table""" try: runs = load_runs() if not runs: return pd.DataFrame( { "Status": [], "W&B Link": [], "Project": [], "Task": [], "Model": [], "Created": [], "Run ID": [], } ) data = [] for run in reversed(runs): # Newest first wandb_link = "" if run.get("wandb_url"): wandb_link = f"[šŸ“Š W&B Run]({run['wandb_url']})" data.append( { "Status": f"{get_status_emoji(run['status'])} {run['status'].title()}", "W&B Link": wandb_link, "Project": run["project_name"], "Task": run["task"].replace("-", " ").title(), "Model": run["base_model"], "Created": run["created_at"][:16].replace("T", " "), "Run ID": run["run_id"][:8] + "...", } ) return pd.DataFrame(data) except Exception as e: return pd.DataFrame({"Error": [f"Failed to fetch runs: {str(e)}"]}) def submit_training_job_ui( task, project_name, base_model, dataset_path, epochs, batch_size, learning_rate, backend, push_to_hub, hub_repo_id, ): """Submit training job from web UI""" if not all([task, project_name, base_model, dataset_path]): return "āŒ Please fill in all required fields", fetch_runs_for_ui() result = start_training_job( task=task, project_name=project_name, base_model=base_model, dataset_path=dataset_path, epochs=str(epochs), batch_size=str(batch_size), learning_rate=str(learning_rate), backend=backend, push_to_hub=str(push_to_hub).lower(), hub_repo_id=hub_repo_id, ) return result, fetch_runs_for_ui() # Create Gradio Interface with gr.Blocks( title="AutoTrain Gradio MCP Server", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1200px !important; } """, ) as app: gr.Markdown(""" # šŸš€ AutoTrain MCP Server Get your AI models to train your AI models! This space is an MCP server that you can use in Claude Desktop, Cursor, VSCode, etc to train your AI models. :warning: To train models you with need to duplicate this space! **MCP Server**: AI assistants can use tools at http://SPACE_URL/gradio_api/mcp/sse Connect to it like this: ```javascript { "mcpServers": { "autotrain": { "url": "http://SPACE_URL/gradio_api/mcp/sse", "headers": {"Authorization": "Bearer "} } } } ``` Or like this for Claude Desktop: ```javascript { "mcpServers": { "autotrain": { "command": "npx", "args": [ "mcp-remote", "http://SPACE_URL/gradio_api/mcp/sse", "--header", "Authorization: Bearer " ] } } } ``` """) with gr.Tabs(): # Dashboard Tab with gr.Tab("šŸ“Š Training Runs"): with gr.Row(): runs_table = gr.Dataframe( value=fetch_runs_for_ui(), interactive=False, datatype="markdown" ) with gr.Row(): refresh_btn = gr.Button("šŸ”„ Refresh", variant="secondary") with gr.Tab("šŸ”§ System Status"): stats = gr.Markdown(value=get_system_status()) # MCP Tools Tab with gr.Tab("šŸ”§ MCP Tools"): gr.Markdown("## MCP Tool Testing Interface") gr.Markdown("These tools are exposed via MCP for Claude Desktop") gr.Interface( fn=get_system_status, inputs=[], outputs=gr.Textbox(label="System Status"), title="get_system_status", description="Get AutoTrain system status and capabilities", ) gr.Interface( fn=get_training_runs, inputs=[ gr.Textbox(label="limit", value="20"), gr.Textbox(label="status", value=""), ], outputs=gr.Textbox(label="Training Runs"), title="get_training_runs", description="Get list of training runs with status", ) gr.Interface( fn=start_training_job, inputs=[ gr.Textbox(label="task", value="text-classification"), gr.Textbox(label="project_name", value="test-project"), gr.Textbox(label="base_model", value="distilbert-base-uncased"), gr.Textbox(label="dataset_path", value="imdb"), gr.Textbox(label="epochs", value="1"), gr.Textbox(label="batch_size", value="8"), gr.Textbox(label="learning_rate", value="2e-5"), gr.Textbox(label="backend", value="local"), gr.Textbox(label="push_to_hub", value="false"), gr.Textbox(label="hub_repo_id", placeholder="your-repo-id"), ], outputs=gr.Textbox(label="Training Job Result"), title="start_training_job", description="Start a new AutoTrain training job", ) gr.Interface( fn=get_run_details, inputs=gr.Textbox( label="run_id", placeholder="Enter run ID or first 8 chars" ), outputs=gr.Textbox(label="Run Details"), title="get_run_details", description="Get detailed information about a training run", ) gr.Interface( fn=get_task_recommendations, inputs=[ gr.Textbox(label="task", value="text-classification"), gr.Textbox(label="dataset_size", value="medium"), ], outputs=gr.Textbox(label="Recommendations"), title="get_task_recommendations", description="Get training recommendations for a task", ) # Event handlers with proper function names (not lambda) def refresh_ui_data(): return fetch_runs_for_ui(), get_system_status() def load_initial_ui_data(): return fetch_runs_for_ui(), get_system_status() refresh_btn.click( fn=refresh_ui_data, outputs=[runs_table, stats], ) # Load initial data app.load( fn=load_initial_ui_data, outputs=[runs_table, stats], ) # Helper to find an available port def _find_available_port(start_port: int = 7860, max_tries: int = 20) -> int: """Return the first available port starting from `start_port`.""" port = start_port for _ in range(max_tries): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: try: s.bind(("0.0.0.0", port)) return port # Port is free except OSError: port += 1 # Try next port # If no port found, let OS pick one return 0 if __name__ == "__main__": chosen_port = int(os.environ.get("GRADIO_SERVER_PORT", "7860")) try: chosen_port = _find_available_port(chosen_port) except Exception: # Fallback to OS-assigned port if something goes wrong chosen_port = 0 app.launch( server_name="0.0.0.0", server_port=chosen_port, mcp_server=True, # Enable MCP server functionality )