Spaces:
Running
Running
File size: 12,643 Bytes
6b07e4a fab0ae1 ec60e9a 6b07e4a f7387e3 ec60e9a fab0ae1 6b07e4a 6da808e 6b07e4a 6da808e ec60e9a be34010 ec60e9a f6c1bc9 ec60e9a 6da808e ec60e9a 6da808e ec60e9a cc6a423 6da808e ec60e9a 6da808e 5126148 6da808e 5126148 6da808e 5126148 6da808e 5126148 6da808e 5126148 6da808e 6b07e4a 6da808e be34010 6da808e 5126148 6da808e 5126148 6da808e 5126148 6da808e 5126148 6da808e 6b07e4a 6da808e 5126148 6da808e be34010 6b07e4a be34010 6da808e ec60e9a be34010 fd5c6de be34010 fd5c6de be34010 fd5c6de be34010 fd5c6de be34010 6b07e4a 6da808e 6b07e4a f6c1bc9 6b07e4a f6c1bc9 6b07e4a ef51dcd 6b07e4a fab0ae1 6b07e4a fab0ae1 6b07e4a fab0ae1 6b07e4a fab0ae1 6b07e4a fab0ae1 6b07e4a 8d31802 6b07e4a 8d31802 6b07e4a 8d31802 6b07e4a 8d31802 6b07e4a fab0ae1 6b07e4a fab0ae1 fd5c6de 6b07e4a 8d31802 6b07e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import requests
import gradio as gr
from urllib.parse import urlencode
import os
from datetime import datetime
import json
# Load environment variables
DEFAULT_IMAGE = "https://hub-recap.imglab-cdn.net/default.jpg?width=1200&text=%3Cspan+size%3D%2212pt%22+weight%3D%22bold%22%3EHugging+Face++%E2%9D%A4%EF%B8%8F+bartowski+in+2024%3C%2Fspan%3E%0A%0A%3Cspan+weight%3D%22bold%22%3E2%2C020%2C552%3C%2Fspan%3E+model+downloads%0A%3Cspan+weight%3D%22bold%22%3E5%2C407%3C%2Fspan%3E+model+likes%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+downloads%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+likes%0A%0A%3Cspan+size%3D%2210pt%22%3EMost+Popular+Contributions%3A%3C%2Fspan%3E%0AModel%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgemma-2-9b-it-GGUF%3C%2Fspan%3E%0A++%2843%2C949+downloads%2C+196+likes%29%0ADataset%3A+%3Cspan+weight%3D%22bold%22%3ENone%3C%2Fspan%3E%0A++%280+downloads%2C+0+likes%29%0ASpace%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgguf-metadata-updater%3C%2Fspan%3E%0A++%287+likes%29&text-width=800&text-height=600&text-padding=60&text-color=39%2C71%2C111&text-x=460&text-y=40&format=png&dpr=2"
# Load percentiles data
with open("percentiles.json") as f:
PERCENTILES = json.load(f)
def get_percentile_rank(likes, category):
if likes == 0:
return 0
percentiles = PERCENTILES[f"{category}_percentiles"]
if likes >= percentiles["p_99999"]:
return 99.999
elif likes >= percentiles["p_9999"]:
return 99.99
elif likes >= percentiles["p_999"]:
return 99.9
return 0
def create_image(stats, username):
# Determine which image to use based on highest value
total_stats = stats["Total Statistics"]
model_activity = total_stats["Model Downloads"] + total_stats["Model Likes"]
dataset_activity = total_stats["Dataset Downloads"] + total_stats["Dataset Likes"]
space_activity = total_stats["Space Likes"]
# Calculate percentiles based on likes
model_percentile = get_percentile_rank(total_stats["Model Likes"], "model")
dataset_percentile = get_percentile_rank(total_stats["Dataset Likes"], "dataset")
space_percentile = get_percentile_rank(space_activity, "space")
# Choose base image URL based on highest activity (keep using activity for image selection)
if model_activity == 0 and dataset_activity == 0 and space_activity == 0:
url = "https://hub-recap.imglab-cdn.net/images/empty.png"
avatar = "new! We couldn't find your stats on the Hub, maybe in 2025?"
elif model_activity >= max(dataset_activity, space_activity):
url = "https://hub-recap.imglab-cdn.net/images/model.png"
avatar = f"Model Pro" + (
f" (top {model_percentile}%)" if model_percentile > 0 else ""
)
elif dataset_activity >= max(model_activity, space_activity):
url = "https://hub-recap.imglab-cdn.net/images/dataset.png"
avatar = f"Dataset Guru" + (
f" (top {dataset_percentile}%)" if dataset_percentile > 0 else ""
)
elif space_activity >= max(model_activity, dataset_activity):
url = "https://hub-recap.imglab-cdn.net/images/space.png"
avatar = f"Space Artiste" + (
f" (top {space_percentile}%)" if space_percentile > 0 else ""
)
else:
url = "https://hub-recap.imglab-cdn.net/images/empty.png"
avatar = "newbie! We couldn't find your stats on the Hub, maybe in 2025?"
# Build text content with proper formatting
text_parts = []
text_parts.append(
f'<span size="11pt" weight="bold">Hugging Face ❤️ {username} in 2024</span>'
)
text_parts.append("") # Empty line for spacing
# Stats section
stats_lines = []
if total_stats["Model Downloads"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Model Downloads"]:,}</span> model downloads</span>'
)
if total_stats["Model Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Model Likes"]:,}</span> model likes</span>'
)
if total_stats["Dataset Downloads"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Dataset Downloads"]:,}</span> dataset downloads</span>'
)
if total_stats["Dataset Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Dataset Likes"]:,}</span> dataset likes</span>'
)
if total_stats["Space Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Space Likes"]:,}</span> space likes</span>'
)
if stats_lines:
text_parts.extend(stats_lines)
text_parts.append("") # Empty line for spacing
# Popular items section
top_items = stats["Most Popular Items"]
if any(
item["likes"] > 0 or item.get("downloads", 0) > 0 for item in top_items.values()
):
text_parts.append(
'<span size="9pt" weight="bold">Most Popular Contributions:</span>'
)
if top_items["Top Model"]["downloads"] > 0:
text_parts.append(
f'<span size="9pt">Model: <span weight="bold">{top_items["Top Model"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Model"]["downloads"]:,} downloads, {top_items["Top Model"]["likes"]} likes)</span>'
)
if top_items["Top Dataset"]["downloads"] > 0:
text_parts.append(
f'<span size="9pt">Dataset: <span weight="bold">{top_items["Top Dataset"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Dataset"]["downloads"]:,} downloads, {top_items["Top Dataset"]["likes"]} likes)</span>'
)
if top_items["Top Space"]["likes"] > 0:
text_parts.append(
f'<span size="9pt">Space: <span weight="bold">{top_items["Top Space"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Space"]["likes"]} likes)</span>'
)
# Update the avatar message with percentile
text_parts.append("") # Empty line for spacing
text_parts.append(f'<span size="9pt">You are a {avatar}!</span>')
# Add additional percentile info if other categories are significant
other_percentiles = []
if model_percentile > 0 and "model" not in avatar.lower():
other_percentiles.append(f"Top {model_percentile}% in models")
if dataset_percentile > 0 and "dataset" not in avatar.lower():
other_percentiles.append(f"Top {dataset_percentile}% in datasets")
if space_percentile > 0 and "space" not in avatar.lower():
other_percentiles.append(f"Top {space_percentile}% in spaces")
if other_percentiles:
text_parts.append(
f'<span size="9pt">{". ".join(other_percentiles)}!</span>'
)
# Join all parts with newlines
text = "\n".join(text_parts)
params = {
"width": "1200",
"text": text,
"text-width": "700",
"text-height": "600",
"text-padding": "30",
"text-color": "39,71,111",
"text-x": "460",
"text-y": "40",
"format": "png",
"dpr": "2",
}
return f"{url}?{urlencode(params)}"
def is_from_2024(created_at_str):
if not created_at_str:
return False
created_at = datetime.strptime(created_at_str, "%Y-%m-%dT%H:%M:%S.%fZ")
return created_at.year == 2024
def get_user_stats(username):
headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
# Get models stats
models_response = requests.get(
"https://huggingface.co/api/models",
params={"author": username, "full": "True"},
headers=headers,
)
# Filter for 2024 models only
models = [
model
for model in models_response.json()
if is_from_2024(model.get("createdAt"))
]
# Get datasets stats
datasets_response = requests.get(
"https://huggingface.co/api/datasets",
params={"author": username, "full": "True"},
headers=headers,
)
# Filter for 2024 datasets only
datasets = [
dataset
for dataset in datasets_response.json()
if is_from_2024(dataset.get("createdAt"))
]
# Get spaces stats
spaces_response = requests.get(
"https://huggingface.co/api/spaces",
params={"author": username, "full": "True"},
headers=headers,
)
# Filter for 2024 spaces only
spaces = [
space
for space in spaces_response.json()
if is_from_2024(space.get("createdAt"))
]
# Calculate totals for 2024 items only
total_model_downloads = sum(model.get("downloads", 0) for model in models)
total_model_likes = sum(model.get("likes", 0) for model in models)
total_dataset_downloads = sum(dataset.get("downloads", 0) for dataset in datasets)
total_dataset_likes = sum(dataset.get("likes", 0) for dataset in datasets)
total_space_likes = sum(space.get("likes", 0) for space in spaces)
# Find most liked items from 2024
most_liked_model = max(models, key=lambda x: x.get("likes", 0), default=None)
most_liked_dataset = max(datasets, key=lambda x: x.get("likes", 0), default=None)
most_liked_space = max(spaces, key=lambda x: x.get("likes", 0), default=None)
stats = {
"Total Statistics": {
"Model Downloads": total_model_downloads,
"Model Likes": total_model_likes,
"Dataset Downloads": total_dataset_downloads,
"Dataset Likes": total_dataset_likes,
"Space Likes": total_space_likes,
},
"Most Popular Items": {
"Top Model": {
"name": (
most_liked_model.get("modelId", "None")
if most_liked_model
else "None"
),
"likes": most_liked_model.get("likes", 0) if most_liked_model else 0,
"downloads": (
most_liked_model.get("downloads", 0) if most_liked_model else 0
),
},
"Top Dataset": {
"name": (
most_liked_dataset.get("id", "None")
if most_liked_dataset
else "None"
),
"likes": (
most_liked_dataset.get("likes", 0) if most_liked_dataset else 0
),
"downloads": (
most_liked_dataset.get("downloads", 0) if most_liked_dataset else 0
),
},
"Top Space": {
"name": (
most_liked_space.get("id", "None") if most_liked_space else "None"
),
"likes": most_liked_space.get("likes", 0) if most_liked_space else 0,
},
},
}
# Generate image URL
image_url = create_image(stats, username)
return image_url
with gr.Blocks(title="Hugging Face Community Stats") as demo:
gr.Markdown("# Hugging Face Community Recap")
gr.Markdown(
"Enter a username to see their impact and top contributions across the Hugging Face Hub"
)
with gr.Row():
username_input = gr.Textbox(
label="Hub username",
placeholder="Enter Hugging Face username...",
scale=6,
value="bartowski",
)
submit_btn = gr.Button("Get Stats", scale=6)
with gr.Row():
# Add example usernames
gr.Examples(
examples=[
["merve"],
["mlabonne"],
["bartowski"],
["huggingface"],
["cfahlgren1"],
],
inputs=username_input,
label="Try these examples",
)
with gr.Row():
with gr.Column():
stats_image = gr.Markdown(f"![Hugging Face Stats]({DEFAULT_IMAGE})")
def format_markdown(image_url):
return f"![Hugging Face Stats]({image_url})"
# Handle submission
submit_btn.click(
fn=lambda x: format_markdown(get_user_stats(x)),
inputs=username_input,
outputs=stats_image,
api_name="get_stats",
)
# Also trigger on enter key
username_input.submit(
fn=lambda x: format_markdown(get_user_stats(x)),
inputs=username_input,
outputs=stats_image,
)
if __name__ == "__main__":
demo.launch()
|