{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/ben/code/hub-recap/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "from datasets import load_dataset\n", "\n", "ds = load_dataset(\"cfahlgren1/hub-stats\", \"datasets\")\n", "ds_df = ds[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ds = load_dataset(\"cfahlgren1/hub-stats\", \"models\")\n", "md_df = ds[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating train split: 100%|██████████| 309714/309714 [00:00<00:00, 353713.86 examples/s]\n" ] } ], "source": [ "ds = load_dataset(\"cfahlgren1/hub-stats\", \"spaces\")\n", "sp_df = ds[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'p_99999': 1299, 'p_9999': 491, 'p_999': 125}\n" ] } ], "source": [ "dataset_percentiles = {\n", " \"p_99999\": int(ds_df[\"likes\"].quantile(0.99999)),\n", " \"p_9999\": int(ds_df[\"likes\"].quantile(0.9999)),\n", " \"p_999\": int(ds_df[\"likes\"].quantile(0.999)),\n", "}\n", "print(dataset_percentiles)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'p_99999': 3698, 'p_9999': 949, 'p_999': 143}\n" ] } ], "source": [ "model_percentiles = {\n", " \"p_99999\": int(md_df[\"likes\"].quantile(0.99999)),\n", " \"p_9999\": int(md_df[\"likes\"].quantile(0.9999)),\n", " \"p_999\": int(md_df[\"likes\"].quantile(0.999)),\n", "}\n", "print(model_percentiles)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'p_99999': 6040, 'p_9999': 1552, 'p_999': 326}\n" ] } ], "source": [ "space_percentiles = {\n", " \"p_99999\": int(sp_df[\"likes\"].quantile(0.99999)),\n", " \"p_9999\": int(sp_df[\"likes\"].quantile(0.9999)),\n", " \"p_999\": int(sp_df[\"likes\"].quantile(0.999)),\n", "}\n", "print(space_percentiles)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "with open(\"percentiles.json\", \"w\") as f:\n", " json.dump(\n", " {\n", " \"dataset_percentiles\": dataset_percentiles,\n", " \"model_percentiles\": model_percentiles,\n", " \"space_percentiles\": space_percentiles,\n", " },\n", " f,\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 2 }