Spaces:
Sleeping
Sleeping
File size: 1,379 Bytes
46b22e9 0972752 95c07de 0972752 c5b14f4 95c07de c5b14f4 0972752 95c07de 46b22e9 4a1b9e9 49fadad 46b22e9 4a1b9e9 49fadad 4a1b9e9 46b22e9 95c07de 4a7d132 95c07de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from fastai.vision.all import load_learner, PILImage
import gradio as gr
from PIL import Image
# Define the missing function
def is_cat(x):
return x[0].isupper()
# Load the trained model
try:
model = load_learner('model.pkl')
print("✅ Model loaded successfully")
except Exception as e:
print(f"❌ Error loading model: {e}")
# Define a function to make predictions
def predict(image):
try:
print("📸 Received image for prediction")
# Convert to Fastai's expected PILImage format
image = PILImage.create(image)
# Run prediction
pred, _, probs = model.predict(image)
# Convert boolean prediction to "Cat" or "Dog"
label = "Cat" if pred else "Dog"
confidence = float(probs.max()) # Convert Tensor to float
print(f"✅ Prediction successful: {label}, Confidence: {confidence:.2f}")
return f"Prediction: {label} (Confidence: {confidence:.2f})"
except Exception as e:
print(f"❌ Error during prediction: {e}")
return f"Error: {e}"
# Create the Gradio web interface
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(),
title="Cat vs Dog Classifier",
description="Upload an image of a cat or dog and let the model classify it!"
)
# Launch the Gradio app
interface.launch()
|