|
import os |
|
import shutil |
|
import subprocess |
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" |
|
import gradio as gr |
|
|
|
from huggingface_hub import create_repo, HfApi |
|
from huggingface_hub import snapshot_download |
|
from huggingface_hub import whoami |
|
from huggingface_hub import ModelCard |
|
|
|
from gradio_huggingfacehub_search import HuggingfaceHubSearch |
|
|
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from textwrap import dedent |
|
|
|
LLAMA_LIKE_ARCHS = ["MistralForCausalLM",] |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
def script_to_use(model_id, api): |
|
info = api.model_info(model_id) |
|
if info.config is None: |
|
return None |
|
arch = info.config.get("architectures", None) |
|
if arch is None: |
|
return None |
|
arch = arch[0] |
|
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py" |
|
|
|
def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken | None): |
|
if oauth_token.token is None: |
|
raise ValueError("You must be logged in to use GGUF-my-repo") |
|
model_name = model_id.split('/')[-1] |
|
fp16 = f"{model_name}/{model_name.lower()}.fp16.bin" |
|
|
|
try: |
|
api = HfApi(token=oauth_token.token) |
|
|
|
dl_pattern = ["*.md", "*.json", "*.model"] |
|
|
|
pattern = ( |
|
"*.safetensors" |
|
if any( |
|
file.path.endswith(".safetensors") |
|
for file in api.list_repo_tree( |
|
repo_id=model_id, |
|
recursive=True, |
|
) |
|
) |
|
else "*.bin" |
|
) |
|
|
|
dl_pattern += pattern |
|
|
|
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) |
|
print("Model downloaded successully!") |
|
|
|
conversion_script = script_to_use(model_id, api) |
|
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}" |
|
result = subprocess.run(fp16_conversion, shell=True, capture_output=True) |
|
print(result) |
|
if result.returncode != 0: |
|
raise Exception(f"Error converting to fp16: {result.stderr}") |
|
print("Model converted to fp16 successully!") |
|
|
|
qtype = f"{model_name}/{model_name.lower()}.{q_method.upper()}.gguf" |
|
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" |
|
result = subprocess.run(quantise_ggml, shell=True, capture_output=True) |
|
if result.returncode != 0: |
|
raise Exception(f"Error quantizing: {result.stderr}") |
|
print("Quantised successfully!") |
|
|
|
|
|
new_repo_url = api.create_repo(repo_id=f"{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo) |
|
new_repo_id = new_repo_url.repo_id |
|
print("Repo created successfully!", new_repo_url) |
|
|
|
try: |
|
card = ModelCard.load(model_id, token=oauth_token.token) |
|
except: |
|
card = ModelCard("") |
|
if card.data.tags is None: |
|
card.data.tags = [] |
|
card.data.tags.append("llama-cpp") |
|
card.data.tags.append("gguf-my-repo") |
|
card.text = dedent( |
|
f""" |
|
# {new_repo_id} |
|
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. |
|
## Use with llama.cpp |
|
|
|
Install llama.cpp through brew. |
|
|
|
```bash |
|
brew install ggerganov/ggerganov/llama.cpp |
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
CLI: |
|
|
|
```bash |
|
llama-cli --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is" |
|
``` |
|
|
|
Server: |
|
|
|
```bash |
|
llama-server --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp && \ |
|
cd llama.cpp && \ |
|
make && \ |
|
./main -m {qtype.split("/")[-1]} -n 128 |
|
``` |
|
""" |
|
) |
|
card.save(os.path.join(model_name, "README-new.md")) |
|
|
|
api.upload_file( |
|
path_or_fileobj=qtype, |
|
path_in_repo=qtype.split("/")[-1], |
|
repo_id=new_repo_id, |
|
) |
|
|
|
api.upload_file( |
|
path_or_fileobj=f"{model_name}/README-new.md", |
|
path_in_repo="README.md", |
|
repo_id=new_repo_id, |
|
) |
|
print("Uploaded successfully!") |
|
|
|
return ( |
|
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', |
|
"llama.png", |
|
) |
|
except Exception as e: |
|
return (f"Error: {e}", "error.png") |
|
finally: |
|
shutil.rmtree(model_name, ignore_errors=True) |
|
print("Folder cleaned up successfully!") |
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_model, |
|
inputs=[ |
|
HuggingfaceHubSearch( |
|
label="Hub Model ID", |
|
placeholder="Search for model id on Huggingface", |
|
search_type="model", |
|
), |
|
gr.Dropdown( |
|
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], |
|
label="Quantization Method", |
|
info="GGML quantisation type", |
|
value="Q4_K_M", |
|
filterable=False |
|
), |
|
gr.Checkbox( |
|
value=False, |
|
label="Private Repo", |
|
info="Create a private repo under your username." |
|
), |
|
], |
|
outputs=[ |
|
gr.Markdown(label="output"), |
|
gr.Image(show_label=False), |
|
], |
|
title="Create your own GGUF Quants, blazingly fast ⚡!", |
|
description="The space takes an HF repo as an input, quantises it and creates a Public repo containing the selected quant under your HF user namespace.", |
|
) |
|
with gr.Blocks() as demo: |
|
gr.Markdown("You must be logged in to use GGUF-my-repo.") |
|
gr.LoginButton(min_width=250) |
|
iface.render() |
|
|
|
def restart_space(): |
|
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=21600) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True) |