Vaibhav Srivastav
commited on
Commit
•
2bede7c
1
Parent(s):
eecc2cb
up.
Browse files- Dockerfile +61 -0
- app.py +59 -0
Dockerfile
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y --no-install-recommends \
|
6 |
+
git \
|
7 |
+
git-lfs \
|
8 |
+
wget \
|
9 |
+
curl \
|
10 |
+
# python build dependencies \
|
11 |
+
build-essential \
|
12 |
+
libssl-dev \
|
13 |
+
zlib1g-dev \
|
14 |
+
libbz2-dev \
|
15 |
+
libreadline-dev \
|
16 |
+
libsqlite3-dev \
|
17 |
+
libncursesw5-dev \
|
18 |
+
xz-utils \
|
19 |
+
tk-dev \
|
20 |
+
libxml2-dev \
|
21 |
+
libxmlsec1-dev \
|
22 |
+
libffi-dev \
|
23 |
+
liblzma-dev \
|
24 |
+
# gradio dependencies \
|
25 |
+
ffmpeg
|
26 |
+
|
27 |
+
RUN useradd -m -u 1000 user
|
28 |
+
USER user
|
29 |
+
ENV HOME=/home/user \
|
30 |
+
PATH=/home/user/.local/bin:${PATH}
|
31 |
+
WORKDIR ${HOME}/app
|
32 |
+
|
33 |
+
RUN curl https://pyenv.run | bash
|
34 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
35 |
+
ARG PYTHON_VERSION=3.10.13
|
36 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
37 |
+
pyenv global ${PYTHON_VERSION} && \
|
38 |
+
pyenv rehash && \
|
39 |
+
pip install --no-cache-dir -U pip setuptools wheel && \
|
40 |
+
pip install "huggingface-hub" "hf-transfer"
|
41 |
+
|
42 |
+
COPY --chown=1000 . ${HOME}/app
|
43 |
+
RUN git clone https://github.com/ggerganov/llama.cpp && \
|
44 |
+
cd llama.cpp && \
|
45 |
+
make clean && \
|
46 |
+
LLAMA_CUDA=1 make
|
47 |
+
|
48 |
+
RUN pip install -r llama.cpp/requirements.txt
|
49 |
+
|
50 |
+
ENV PYTHONPATH=${HOME}/app \
|
51 |
+
PYTHONUNBUFFERED=1 \
|
52 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
53 |
+
GRADIO_ALLOW_FLAGGING=never \
|
54 |
+
GRADIO_NUM_PORTS=1 \
|
55 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
56 |
+
GRADIO_THEME=huggingface \
|
57 |
+
TQDM_POSITION=-1 \
|
58 |
+
TQDM_MININTERVAL=1 \
|
59 |
+
SYSTEM=spaces
|
60 |
+
|
61 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
from huggingface_hub import create_repo, HfApi
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
api = HfApi()
|
8 |
+
|
9 |
+
def process_model(model_id, q_method, username, hf_token):
|
10 |
+
|
11 |
+
MODEL_NAME = model_id.split('/')[-1]
|
12 |
+
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
|
13 |
+
|
14 |
+
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
|
15 |
+
print("Model downloaded successully!")
|
16 |
+
|
17 |
+
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
|
18 |
+
subprocess.run(fp16_conversion, shell=True)
|
19 |
+
print("Model converted to fp16 successully!")
|
20 |
+
|
21 |
+
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
|
22 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
|
23 |
+
subprocess.run(quantise_ggml, shell=True)
|
24 |
+
print("Quantised successfully!")
|
25 |
+
|
26 |
+
# Create empty repo
|
27 |
+
create_repo(
|
28 |
+
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF",
|
29 |
+
repo_type="model",
|
30 |
+
exist_ok=True,
|
31 |
+
token=hf_token
|
32 |
+
)
|
33 |
+
print("Empty repo created successfully!")
|
34 |
+
|
35 |
+
# Upload gguf files
|
36 |
+
api.upload_folder(
|
37 |
+
folder_path=MODEL_NAME,
|
38 |
+
repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF",
|
39 |
+
allow_patterns=["*.gguf","$.md"],
|
40 |
+
token=hf_token
|
41 |
+
)
|
42 |
+
print("Uploaded successfully!")
|
43 |
+
|
44 |
+
return "Processing complete."
|
45 |
+
|
46 |
+
# Create Gradio interface
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=process_model,
|
49 |
+
inputs=[
|
50 |
+
gr.Textbox(lines=1, label="Model ID"),
|
51 |
+
gr.Textbox(lines=1, label="Quantization Methods"),
|
52 |
+
gr.Textbox(lines=1, label="Username"),
|
53 |
+
gr.Textbox(lines=1, label="Token")
|
54 |
+
],
|
55 |
+
outputs="text"
|
56 |
+
)
|
57 |
+
|
58 |
+
# Launch the interface
|
59 |
+
iface.launch(debug=True)
|