File size: 17,381 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import importlib
import math
import warnings
from typing import Any, Optional, Union

import torch
import torch.nn as nn
import torch.nn.init as init

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils import transpose
from peft.utils.integrations import gather_params_ctx

from .layer import LoraLayer


class LoraParallelLinear(nn.Module, LoraLayer):
    """
    When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes
    consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear
    layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B,
    while lora_A is still a complete linear layer.
    """

    def __init__(
        self,
        base_layer,
        adapter_name: str,
        backend,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False,
        is_target_conv_1d_layer: bool = False,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        lora_bias: bool = False,
        **kwargs,
    ):
        if lora_bias:
            raise ValueError(f"{self.__class__.__name__} does not support lora_bias yet, set it to False")

        super().__init__()
        LoraLayer.__init__(self, base_layer=base_layer, **kwargs)

        if use_dora:
            raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")

        self.backend = backend
        self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear)
        self.fan_in_fan_out = fan_in_fan_out
        self._active_adapter = adapter_name

        megatron_config = kwargs["megatron_config"]
        parallel_linear_kwargs = {"megatron_config": megatron_config}
        init_method = init.xavier_normal_
        if hasattr(megatron_config, "init_method"):
            init_method = megatron_config.init_method
        input_is_parallel = True
        gather_output = False
        if isinstance(base_layer, self.backend.RowParallelLinear):
            input_is_parallel = base_layer.input_is_parallel
        else:
            gather_output = base_layer.gather_output
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
            init_method=init_method,
            input_is_parallel=input_is_parallel,
            gather_output=gather_output,
            **parallel_linear_kwargs,
        )

        if is_target_conv_1d_layer:
            raise ValueError(
                f"{self.__class__.__name__} does not support target_conv_1d_layer yet, please set it to False"
            )
        self.is_target_conv_1d_layer = False

    def update_layer(
        self,
        adapter_name,
        r,
        lora_alpha,
        lora_dropout,
        init_lora_weights,
        use_rslora,
        use_dora=False,
        init_method=init.xavier_normal_,
        input_is_parallel=True,
        gather_output=False,
        **parallel_linear_kwargs,
    ):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout[adapter_name] = lora_dropout_layer

        megatron_config = parallel_linear_kwargs["megatron_config"]
        # lora needs to be forced to upgrade to 32-bit precision, otherwise it will overflow
        megatron_config.params_dtype = torch.float32
        if self.is_parallel_a:
            lora_a = self.backend.RowParallelLinear(
                input_size=self.in_features,
                output_size=r,
                bias=False,
                input_is_parallel=input_is_parallel,
                skip_bias_add=True,
                init_method=init_method,
                config=megatron_config,
            )
            lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32)
        else:
            lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32)
            lora_b = self.backend.ColumnParallelLinear(
                input_size=r,
                output_size=self.out_features,
                bias=False,
                gather_output=gather_output,
                init_method=init_method,
                config=megatron_config,
            )
        self.lora_A[adapter_name] = lora_a
        self.lora_B[adapter_name] = lora_b
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        # for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed
        if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"):
            with gather_params_ctx(self.get_base_layer().weight):
                self.pissa_init(adapter_name, init_lora_weights)
        elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora":
            with gather_params_ctx(self.get_base_layer().weight):
                self.olora_init(adapter_name)
        elif init_lora_weights == "loftq":
            with gather_params_ctx(self.get_base_layer().weight):
                self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        # call this before dora_init
        self._move_adapter_to_device_of_base_layer(adapter_name)

        if use_dora:
            self.dora_init(adapter_name)
            self.use_dora[adapter_name] = True
        else:
            self.use_dora[adapter_name] = False

        self.set_adapter(self.active_adapters)

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any):
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)
        # If weight is used for matrix multiplication here, the final aggregation operation of the original
        # parallel_linear layer will be missing, so we need to directly call its forward function to obtain the
        # output of the original parallel_linear layer.
        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result, bias = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            raise ValueError(f"{self.__class__.__name__} does not support mixed_batch_forward yet.")
        elif self.merged:
            result, bias = self.base_layer(x, *args, **kwargs)
        else:
            result, bias = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    if isinstance(dropout, torch.nn.Identity) or not self.training:
                        base_result = result
                    else:
                        x = dropout(x)
                        base_result = None

                    result = result + self.lora_magnitude_vector[active_adapter](
                        x,
                        lora_A=lora_A,
                        lora_B=lora_B,
                        scaling=scaling,
                        base_layer=self.get_base_layer(),
                        base_result=base_result,
                    )

            result = result.to(torch_result_dtype)
        return result, bias

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        orig_weights = orig_weights + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = (
                            self.lora_magnitude_vector[active_adapter]
                            .get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1)
                            .detach()
                        )
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                        dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
                        orig_weights = dora_factor * (orig_weights + delta_weight)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights
                else:
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        base_layer.weight.data = base_layer.weight.data + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = (
                            self.lora_magnitude_vector[active_adapter]
                            .get_weight_norm(
                                base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
                            )
                            .detach()
                        )
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                        dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
                        new_weight = dora_factor * (base_layer.weight.data + delta_weight)
                        base_layer.weight.data = new_weight

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_A.keys():
                weight = self.get_base_layer().weight
                delta_weight = self.get_delta_weight(active_adapter)
                if not self.use_dora[active_adapter]:
                    weight.data -= delta_weight
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
                    weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
                    weight.data = weight_orig

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_B[adapter].weight.device
        dtype = self.lora_B[adapter].weight.dtype

        # In case users wants to merge the adapter weights that are in
        # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # (b)float16 because some CPUs have slow bf16/fp16 matmuls.
        cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16)

        weight_A = self.lora_A[adapter].weight
        weight_B = self.lora_B[adapter].weight

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_A[adapter].weight.data = weight_A.to(dtype)
            self.lora_B[adapter].weight.data = weight_B.to(dtype)

        return output_tensor

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


def dispatch_megatron(
    target: torch.nn.Module,
    adapter_name: str,
    lora_config,
    **kwargs: Any,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if lora_config.megatron_config:
        megatron_core = importlib.import_module(lora_config.megatron_core)
    else:
        megatron_core = None

    if megatron_core and isinstance(
        target_base_layer,
        (megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear),
    ):
        megatron_kwargs = kwargs.copy()
        megatron_config = lora_config.megatron_config
        if isinstance(megatron_config, dict):
            transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig
            megatron_config = transformer_config_class(**lora_config.megatron_config)
        megatron_kwargs["megatron_config"] = megatron_config
        if megatron_kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` "
                "or `RowParallelLinear`. "
                "Setting fan_in_fan_out to False."
            )
            megatron_kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
        new_module = LoraParallelLinear(
            base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs
        )

    return new_module