File size: 30,506 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import math
import warnings
from typing import Any, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge


class MultiplicativeDropoutLayer(nn.Module):
    """
    Implements the multiplicative dropout layer for OFT.
    """

    def __init__(self, p=0.0):
        """
        Initializes the multiplicative dropout layer.

        Parameters:
        p (float): The probability of dropping out a block. Defaults to 0.0.
        """
        super().__init__()
        self.p = p

    def forward(self, x):
        """
        Applies multiplicative dropout to the input tensor.

        Parameters:
        x (Tensor): The input tensor of shape (D, H, H), where `D` represents
                    the number of OFT blocks, and `H` is the size of the square blocks along the last two dimensions,
                    the block size in OFT.
        """
        if self.training:
            # Ensure the last two dimensions are the same
            if x.shape[-1] != x.shape[-2]:
                raise ValueError("The last two dimensions of input should be the same!")

            D, H, _ = x.shape

            # If block share, skip the multiplicative dropout
            if D == 1:
                return x

            num_to_replace = int(self.p * D)
            num_zeros = D - num_to_replace
            mask = torch.cat([torch.ones(num_to_replace, device=x.device), torch.zeros(num_zeros, device=x.device)])
            mask = mask[torch.randperm(D)].view(D, 1, 1)
            eye_matrix = torch.eye(H, device=x.device).repeat(D, 1, 1)
            x = (1 - mask) * x + mask * eye_matrix
        return x


class OFTLayer(BaseTunerLayer):
    """
    Implements the OFT layer.
    """

    # All names of layers that may contain adapter weights
    adapter_layer_names = ("oft_r", "oft_s")
    # other_param_names is defined on parent class
    other_param_names = ("r", "oft_block_size", "oft_dropout")

    def __init__(self, base_layer: nn.Module, **kwargs) -> None:
        """
        Initializes the OFT layer.

        Note, currently only support linear layer and convolutional layer, with further support for other layers to be
        added soon.

        Parameters:
        base_layer: the pretrained model layer
        """
        self.base_layer = base_layer
        # OFT info
        self.oft_r = nn.ParameterDict({})
        self.oft_s = nn.ParameterDict({})
        self.r = {}
        self.oft_block_size = {}
        self.oft_dropout = nn.ModuleDict({})
        self.coft = {}
        self.eps = {}
        self.block_share = {}
        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []
        self.kwargs = kwargs

        base_layer = self.get_base_layer()

        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, nn.Conv2d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        else:
            raise ValueError(f"Unsupported layer type {type(base_layer)}")

        self.in_features = in_features
        self.out_features = out_features

    @property
    def _available_adapters(self) -> set[str]:
        return {*self.oft_r}

    def set_scale(self, adapter, scale):
        if adapter not in self.scaling:
            # Ignore the case where the adapter is not in the layer
            return

        warnings.warn("Scaling operation for OFT not supported! Automatically set scale to 1.")

    def scale_layer(self, scale: float) -> None:
        if scale == 1:
            return

        for active_adapter in self.active_adapters:
            if active_adapter not in self.oft_r.keys():
                continue

            warnings.warn("Scaling operation for OFT not supported! Automatically set scale to 1.")

    def unscale_layer(self, scale=None) -> None:
        for active_adapter in self.active_adapters:
            if active_adapter not in self.oft_r.keys():
                continue

            warnings.warn("Unscaling operation for OFT not supported! Keeping scale to 1.")

    def update_layer(self, adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights):
        """
        Update the linear layer with trainable OFT weights. Override for other layer types.
        """
        """Internal function to create oft adapter

        Args:
            adapter_name (`str`): Name for the adapter to add.
            r (`int`): Rank for the added adapter.
            oft_block_size (`int`): The block size for added adapter.
            module_dropout (`float`):
                The multiplicative dropout probability for disabling adapter blocks during training.
            coft (`bool`): Whether to use the constrained variant of OFT or not.
            eps (`float`):
                The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True.
            block_share (`bool`): Whether to share the OFT parameters between blocks or not.
            init_weights (`bool`): Whether to initialize weights.
        """
        # Initialize the MultiplicativeDropoutLayer for module_dropout > 0.0.
        if module_dropout > 0.0:
            oft_dropout_layer = MultiplicativeDropoutLayer(p=module_dropout)
        else:
            oft_dropout_layer = nn.Identity()
        self.oft_dropout.update(nn.ModuleDict({adapter_name: oft_dropout_layer}))

        if r == 0 and oft_block_size != 0:
            if self.in_features % oft_block_size != 0 or oft_block_size > self.in_features:
                old_oft_block_size = oft_block_size
                oft_block_size = self.adjust_oft_parameters(self.in_features, oft_block_size)
                warnings.warn(
                    f"Invalid `oft_block_size` ({old_oft_block_size})! Adjusted `oft_block_size` to ({oft_block_size})."
                )
            r = int(self.in_features // oft_block_size)
        elif r != 0 and oft_block_size == 0:
            if self.in_features % r != 0 or r > self.in_features:
                old_r = r
                r = self.adjust_oft_parameters(self.in_features, r)
                warnings.warn(f"Invalid `r` ({old_r})! Adjusted `r` to ({r}).")
            oft_block_size = int(self.in_features // r)
        else:
            raise ValueError(
                "Something went wrong, please report this error: https://github.com/huggingface/peft/issues"
            )

        self.coft[adapter_name] = coft
        self.block_share[adapter_name] = block_share
        self.eps[adapter_name] = eps * math.ceil(self.out_features / r) * math.ceil(self.out_features / r)

        # Create weights with provided shape
        if block_share:
            self.oft_r[adapter_name] = nn.Parameter(
                torch.empty(1, math.ceil(self.in_features / r), math.ceil(self.in_features / r))
            )
        else:
            self.oft_r[adapter_name] = nn.Parameter(
                torch.empty(r, math.ceil(self.in_features / r), math.ceil(self.in_features / r))
            )
        self.oft_s[adapter_name] = nn.Parameter(torch.empty(int(self.out_features), 1))

        # Initialize weights
        self.reset_oft_parameters(adapter_name, init_weights)

        # set oft r and block size
        self.r[adapter_name] = r
        self.oft_block_size[adapter_name] = oft_block_size

        # Move new weights to device
        self._move_adapter_to_device_of_base_layer(adapter_name)
        self.set_adapter(self.active_adapters)

    def reset_oft_parameters(self, adapter_name, init_weights):
        """
        Reset the OFT parameters.
        """
        if init_weights is False:
            nn.init.normal_(self.oft_r[adapter_name], mean=0.0, std=0.1)
            nn.init.normal_(self.oft_s[adapter_name], mean=1.0, std=0.1)
            return

        if adapter_name in self.oft_r.keys():
            if init_weights is True:
                # initialize oft_r to zero
                nn.init.zeros_(self.oft_r[adapter_name])
                nn.init.ones_(self.oft_s[adapter_name])
            else:
                raise ValueError(f"Unknown initialization {init_weights=}")

    def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor:
        """
        Perform the Cayley parametrization on a batch of skew-symmetric matrices.

        Args:
            data: A batch of skew-symmetric matrices of shape (b, r, c).
        """
        b, r, c = data.shape
        # Ensure the input matrix is skew-symmetric
        skew_mat = 0.5 * (data - data.transpose(1, 2))
        id_mat = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c)  # noqa: E741

        # Perform the Cayley parametrization
        Q = torch.linalg.solve(id_mat + skew_mat, id_mat - skew_mat, left=False)

        return Q

    # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155
    def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor:
        if oft_r.shape[0] == 1:
            # block share
            blocks = [oft_r[0, ...] for i in range(rank)]
        else:
            blocks = [oft_r[i, ...] for i in range(rank)]

        # Use torch.block_diag to create the block diagonal matrix
        A = torch.block_diag(*blocks)

        return A

    # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52
    def _project_batch(self, oft_r, eps=1e-5):
        # scaling factor for each of the smaller block matrix
        eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0]))
        I = (  # noqa: E741
            torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype)
            .unsqueeze(0)
            .expand_as(oft_r)
        )
        diff = oft_r - I
        norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True)
        mask = (norm_diff <= eps).bool()
        out = torch.where(mask, oft_r, I + eps * (diff / norm_diff))
        return out

    def adjust_oft_parameters(self, in_features, params):
        """
        Adjust the OFT parameters to be divisible by the in_features dimension.
        """
        if params < in_features:
            higher_params = params
            while higher_params <= in_features and in_features % higher_params != 0:
                higher_params += 1
        else:
            return in_features

        lower_params = params
        while lower_params > 1 and in_features % lower_params != 0:
            lower_params -= 1

        if (params - lower_params) <= (higher_params - params):
            return lower_params
        else:
            return higher_params


class Linear(nn.Module, OFTLayer):
    """OFT implemented in Linear layer"""

    def __init__(
        self,
        base_layer,
        adapter_name: str,
        r: int = 8,
        oft_block_size: int = 0,
        module_dropout: float = 0.0,
        coft: bool = False,
        eps: float = 6e-5,
        block_share: bool = False,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        init_weights: Union[bool, str] = True,
        is_target_conv_1d_layer: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        OFTLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name

        self.update_layer(adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights)
        self.is_target_conv_1d_layer = is_target_conv_1d_layer

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If `None`, all active adapters will be merged.
                Defaults to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self._available_adapters:
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data
                    oft_mat, oft_s = self.get_delta_weight(active_adapter)
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = torch.mm(oft_mat, orig_weights)
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = orig_weights * oft_s

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights.contiguous()
                else:
                    oft_mat, oft_s = self.get_delta_weight(active_adapter)
                    orig_weights = base_layer.weight.data
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = torch.mm(oft_mat, orig_weights)
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = orig_weights * oft_s

                    base_layer.weight.data = orig_weights.contiguous()

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.oft_r.keys():
                oft_mat, oft_s = self.get_delta_weight(active_adapter)

                orig_weights = self.get_base_layer().weight.data
                orig_weights = torch.transpose(orig_weights, 0, 1)
                orig_weights = torch.mm(oft_mat.t(), orig_weights)
                orig_weights = torch.transpose(orig_weights, 0, 1)

                self.get_base_layer().weight.data = orig_weights * (1 / oft_s)

    def get_delta_weight(self, adapter_name) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        oft_r = self.oft_r[adapter_name]
        oft_s = self.oft_s[adapter_name]

        rank = self.r[adapter_name]
        coft = self.coft[adapter_name]
        eps = self.eps[adapter_name]

        if coft:
            with torch.no_grad():
                oft_r.copy_(self._project_batch(oft_r, eps=eps))

        orth_rotate = self._cayley_batch(oft_r)
        weight = self._block_diagonal(orth_rotate, rank)

        return weight, oft_s

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            oft_rotation = torch.eye(self.in_features, device=x.device, dtype=previous_dtype)
            oft_scale = torch.ones((int(self.out_features), 1), device=x.device, dtype=previous_dtype)

            for active_adapter in self.active_adapters:
                if active_adapter not in self.oft_r.keys():
                    continue
                oft_r = self.oft_r[active_adapter]
                oft_s = self.oft_s[active_adapter]
                dropout = self.oft_dropout[active_adapter]

                rank = self.r[active_adapter]
                coft = self.coft[active_adapter]
                eps = self.eps[active_adapter]

                if coft:
                    with torch.no_grad():
                        oft_r.copy_(self._project_batch(oft_r, eps=eps))

                orth_rotate = self._cayley_batch(oft_r)
                orth_rotate = dropout(orth_rotate)
                oft_mat = self._block_diagonal(orth_rotate, rank)

                oft_rotation = oft_mat @ oft_rotation
                oft_scale = oft_s * oft_scale

            x = x.to(self.get_base_layer().weight.data.dtype)

            orig_weight = self.get_base_layer().weight.data
            orig_weight = torch.transpose(orig_weight, 0, 1)
            oft_rotation = oft_rotation.to(previous_dtype)
            orig_weight = orig_weight.to(previous_dtype)
            rotated_weight = torch.mm(oft_rotation, orig_weight)
            rotated_weight = torch.transpose(rotated_weight, 0, 1)

            scaled_rotated_weight = rotated_weight * oft_scale

            scaled_rotated_weight = scaled_rotated_weight.to(previous_dtype)
            bias = self.get_base_layer().bias.to(previous_dtype) if self.get_base_layer().bias is not None else None
            result = F.linear(input=x, weight=scaled_rotated_weight, bias=bias)

        result = result.to(previous_dtype)
        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "oft." + rep


class Conv2d(nn.Module, OFTLayer):
    """OFT implemented in Conv2d layer"""

    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        r: int = 8,
        oft_block_size: int = 0,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        module_dropout: float = 0.0,
        coft: bool = False,
        eps: float = 6e-5,
        block_share: bool = False,
        init_weights: Union[bool, str] = True,
        **kwargs,
    ) -> None:
        super().__init__()
        OFTLayer.__init__(self, base_layer)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name

        # Create adapter and set it active
        self.update_layer(adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights)

    def update_layer(self, adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights):
        """
        Update the conv2d layer with trainable OFT weights.
        """
        # Initialize the MultiplicativeDropoutLayer for module_dropout > 0.0.
        if module_dropout > 0.0:
            oft_dropout_layer = MultiplicativeDropoutLayer(p=module_dropout)
        else:
            oft_dropout_layer = nn.Identity()
        self.oft_dropout.update(nn.ModuleDict({adapter_name: oft_dropout_layer}))

        # layer information from the base layer
        base_layer = self.get_base_layer()
        conv_filter_dim = self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0]

        if r == 0 and oft_block_size != 0:
            if conv_filter_dim % oft_block_size != 0 or oft_block_size > conv_filter_dim:
                old_oft_block_size = oft_block_size
                oft_block_size = self.adjust_oft_parameters(conv_filter_dim, oft_block_size)
                warnings.warn(
                    f"Invalid `oft_block_size` ({old_oft_block_size})! Adjusted `oft_block_size` to ({oft_block_size})."
                )
            r = int(conv_filter_dim // oft_block_size)
        elif r != 0 and oft_block_size == 0:
            if conv_filter_dim % r != 0 or r > conv_filter_dim:
                old_r = r
                r = self.adjust_oft_parameters(conv_filter_dim, r)
                warnings.warn(f"Invalid `r` ({old_r})! Adjusted `r` to ({r}).")
            oft_block_size = int(conv_filter_dim // r)
        else:
            raise ValueError(
                "Something went wrong, please report this error: https://github.com/huggingface/peft/issues"
            )

        self.coft[adapter_name] = coft
        self.block_share[adapter_name] = block_share
        self.eps[adapter_name] = eps * math.ceil(self.out_features / r) * math.ceil(self.out_features / r)

        # Create weights with provided shape
        if block_share:
            self.oft_r[adapter_name] = nn.Parameter(
                torch.empty(1, math.ceil(conv_filter_dim / r), math.ceil(conv_filter_dim / r))
            )
        else:
            self.oft_r[adapter_name] = nn.Parameter(
                torch.empty(r, math.ceil(conv_filter_dim / r), math.ceil(conv_filter_dim / r))
            )
        self.oft_s[adapter_name] = nn.Parameter(torch.empty(int(self.out_features), 1))

        # Initialize weights
        self.reset_oft_parameters(adapter_name, init_weights)

        # set oft r and block size
        self.r[adapter_name] = r
        self.oft_block_size[adapter_name] = oft_block_size

        # Move new weights to device
        self._move_adapter_to_device_of_base_layer(adapter_name)
        self.set_adapter(self.active_adapters)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.oft_r.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    oft_mat, oft_s = self.get_delta_weight(active_adapter)

                    orig_weights = orig_weights.view(
                        self.out_features, self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0]
                    )
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = torch.mm(oft_mat, orig_weights)
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = orig_weights * oft_s
                    orig_weights = orig_weights.view(
                        self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]
                    )

                    base_layer.weight.data = orig_weights.contiguous()
                else:
                    oft_mat, oft_s = self.get_delta_weight(active_adapter)

                    orig_weights = base_layer.weight.data.clone()
                    orig_weights = orig_weights.view(
                        self.out_features, self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0]
                    )
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = torch.mm(oft_mat, orig_weights)
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = orig_weights * oft_s
                    orig_weights = orig_weights.view(
                        self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]
                    )

                    base_layer.weight.data = orig_weights.contiguous()

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.oft_r.keys():
                oft_mat, oft_s = self.get_delta_weight(active_adapter)

                orig_weights = self.get_base_layer().weight.data.clone()
                orig_weights = orig_weights.view(
                    self.out_features,
                    self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0],
                )
                orig_weights = torch.transpose(orig_weights, 0, 1)
                orig_weights = torch.mm(oft_mat.t(), orig_weights)
                orig_weights = torch.transpose(orig_weights, 0, 1)
                orig_weights = orig_weights * (1 / oft_s)
                orig_weights = orig_weights.view(
                    self.out_features,
                    self.in_features,
                    self.get_base_layer().kernel_size[0],
                    self.get_base_layer().kernel_size[0],
                )

                self.get_base_layer().weight.data = orig_weights

    def get_delta_weight(self, adapter_name) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        oft_r = self.oft_r[adapter_name]
        oft_s = self.oft_s[adapter_name]

        rank = self.r[adapter_name]
        coft = self.coft[adapter_name]
        eps = self.eps[adapter_name]

        if coft:
            with torch.no_grad():
                oft_r.copy_(self._project_batch(oft_r, eps=eps))

        orth_rotate = self._cayley_batch(oft_r)
        weight = self._block_diagonal(orth_rotate, rank)

        return weight, oft_s

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            oft_rotation = torch.eye(
                self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0],
                device=x.device,
                dtype=previous_dtype,
            )
            oft_scale = torch.ones((int(self.out_features), 1), device=x.device, dtype=previous_dtype)

            for active_adapter in self.active_adapters:
                if active_adapter not in self.oft_r.keys():
                    continue
                oft_r = self.oft_r[active_adapter]
                oft_s = self.oft_s[active_adapter]
                dropout = self.oft_dropout[active_adapter]

                rank = self.r[active_adapter]
                coft = self.coft[active_adapter]
                eps = self.eps[active_adapter]

                if coft:
                    with torch.no_grad():
                        oft_r.copy_(self._project_batch(oft_r, eps=eps))

                orth_rotate = self._cayley_batch(oft_r)
                orth_rotate = dropout(orth_rotate)
                oft_mat = self._block_diagonal(orth_rotate, rank)

                oft_rotation = oft_mat @ oft_rotation
                oft_scale = oft_s * oft_scale

            x = x.to(self.get_base_layer().weight.data.dtype)

            orig_weights = self.base_layer.weight.data
            orig_weights = orig_weights.view(
                self.out_features,
                self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0],
            )
            orig_weights = torch.transpose(orig_weights, 0, 1)
            oft_rotation = oft_rotation.to(previous_dtype)
            orig_weights = orig_weights.to(previous_dtype)
            rotated_weight = torch.mm(oft_rotation, orig_weights)
            rotated_weight = torch.transpose(rotated_weight, 0, 1)

            scaled_rotated_weight = rotated_weight * oft_scale

            scaled_rotated_weight = scaled_rotated_weight.view(
                self.out_features,
                self.in_features,
                self.get_base_layer().kernel_size[0],
                self.get_base_layer().kernel_size[0],
            )
            result = F.conv2d(
                input=x,
                weight=scaled_rotated_weight,
                bias=self.get_base_layer().bias,
                padding=self.get_base_layer().padding[0],
                stride=self.get_base_layer().stride[0],
            )

        result = result.to(previous_dtype)
        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "oft." + rep