File size: 20,528 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import copy
from contextlib import contextmanager
from functools import partial
from typing import Optional, Union

import torch
import torch.nn as nn

from peft.tuners.lora.layer import LoraLayer
from peft.tuners.lora.model import LoraModel
from peft.tuners.tuners_utils import BaseTuner
from peft.utils.constants import DUMMY_TARGET_MODULES
from peft.utils.save_and_load import set_peft_model_state_dict

from .. import lora
from .classifier import XLoraClassifier
from .config import XLoraConfig
from .layer import XLoraConv2dLayer, XLoraEmbeddingLayer, XLoraLinearLayer


def convert_layers_to_xlora(
    base: nn.Module,  # PeftModel
    xloramodel: nn.Module,  # XLoraModel
    config: XLoraConfig,
) -> tuple[int, torch.device | None]:
    """
    Returns the number of swapped layers.
    """
    total_swapped = 0
    all_layers = []

    device = None
    for module in base.modules():
        # Check the exact type because classes like OPTLearnedPositionalEmbedding inherit from nn.Embedding
        if isinstance(module, lora.Linear):
            device = module.lora_A[next(iter(module.lora_A))].weight.device
            new_layer = XLoraLinearLayer(
                model=xloramodel,
                target=module,
                target_forward=module.forward,
                layer_number=total_swapped,
                config=config,
            )
            all_layers.append(new_layer)
            module.forward = new_layer.forward  # type: ignore[method-assign]
            total_swapped += 1
        elif isinstance(module, lora.Embedding):
            device = module.lora_embedding_A[next(iter(module.lora_embedding_A))].device
            new_layer = XLoraEmbeddingLayer(
                model=xloramodel,
                target=module,
                target_forward=module.forward,
                layer_number=total_swapped,
                config=config,
            )
            all_layers.append(new_layer)
            module.forward = new_layer.forward  # type: ignore[method-assign]
            total_swapped += 1
        elif isinstance(module, lora.Conv2d):
            device = module.lora_A[next(iter(module.lora_A))].weight.device
            new_layer = XLoraConv2dLayer(
                model=xloramodel,
                target=module,
                target_forward=module.forward,
                layer_number=total_swapped,
                config=config,
            )
            all_layers.append(new_layer)
            module.forward = new_layer.forward  # type: ignore[method-assign]
            total_swapped += 1

    return (total_swapped, device)


def _load_adapter_into_lora_model(
    lora_model: LoraModel,
    adapter_name: str,
    model_id: str,
    torch_device: Optional[str] = None,
    ephemeral_gpu_offload: bool = False,
    autocast_adapter_dtype: bool = True,
    subfolder: Optional[str] = None,
    **kwargs,
):
    """
    This method emulates the behavior of `PeftModel.from_pretrained`. Updates to `PeftModel.from_pretrained` may need
    to be reflected here.

    All params pertain to the adapter (adapter name, model id, `i` is the adapter number in 0 indexing).
    """
    from peft.peft_model import PeftModel
    from peft.tuners.lora.config import LoraConfig
    from peft.utils.other import infer_device
    from peft.utils.save_and_load import load_peft_weights

    hf_hub_download_kwargs, kwargs = PeftModel._split_kwargs(kwargs)
    if torch_device is None:
        torch_device = infer_device()

    if adapter_name not in lora_model.peft_config:
        # load the config
        lora_peft_config = LoraConfig.from_pretrained(
            model_id,
            ephemeral_gpu_offload=ephemeral_gpu_offload,
            subfolder=subfolder,
            **hf_hub_download_kwargs,
        )
        lora_peft_config.inference_mode = False
        lora_model.peft_config[adapter_name] = lora_peft_config
        lora_model.inject_adapter(lora_model.model, adapter_name)

    adapter_weights = load_peft_weights(model_id, device=torch_device, subfolder=subfolder, **hf_hub_download_kwargs)
    new_adapter_weights = {}
    # Rework the keys to contain the adapter numbers
    for old_key in adapter_weights.keys():
        key: str = old_key
        # Remove all the prefixes until we have model.<...>
        while not (key.startswith("model.") and not key.startswith("model.model.")):
            key = key[key.find(".") + 1 :]
        # We always want model.model
        key = "model." + key
        new_adapter_weights[key] = adapter_weights[old_key]

    # load the weights into the model
    ignore_mismatched_sizes = kwargs.get("ignore_mismatched_sizes", False)
    load_result = set_peft_model_state_dict(
        lora_model,
        new_adapter_weights,
        adapter_name=adapter_name,
        ignore_mismatched_sizes=ignore_mismatched_sizes,
    )
    if len(load_result.unexpected_keys) > 0:
        raise ValueError(
            f"Got unexpected keys! Please raise an issue and tag @EricLBuehler.\n\nunexpected_keys={load_result.unexpected_keys}"
        )

    if hasattr(lora_model, "_cast_adapter_dtype"):
        lora_model._cast_adapter_dtype(adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype)


class XLoraModel(BaseTuner):
    """
    Creates an X-LoRA (Mixture of LoRA experts), model from a pretrained transformers model. Currently, this X-LoRA
    implementation only works with models with a transformer architecture.

    The method is described in detail in https://arxiv.org/abs/2402.07148.

    Args:
        model ([`torch.nn.Module`]): The model to be adapted.
        config ([`XLoraConfig`]): The configuration of the Lora model.
        adapter_name (`str`): The name of the adapter, does not affect the LoRA adapter names.

    Returns:
        `torch.nn.Module`: The X-LoRA model.

    Example:
        ```py
        >>> from transformers import AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
        >>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training

        >>> model_config = AutoConfig.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
        >>> config = XLoraConfig(
        ...     task_type="CAUSAL_LM",
        ...     hidden_size=model_config.hidden_size,
        ...     xlora_depth=4,
        ...     adapters={
        ...         "adapter_1": "./path/to/the/checkpoint/",
        ...         "adapter_2": "./path/to/the/checkpoint/",
        ...         "adapter_n": "./path/to/the/checkpoint/",
        ...     },
        ... )
        >>> int8_config = BitsAndBytesConfig(load_in_8bit=True)
        >>> model = AutoModelForCausalLM.from_pretrained(
        ...     "mistralai/Mistral-7B-Instruct-v0.1",
        ...     trust_remote_code=True,
        ...     attn_implementation="flash_attention_2",
        ...     device_map="cuda:0",
        ...     torch_dtype=torch.bfloat16,
        ...     quantization_config=int8_config,
        ... )
        >>> model = prepare_model_for_kbit_training(4)
        >>> xlora_model = get_peft_model(model, config)
        ```
    """

    def __init__(
        self,
        model: nn.Module,
        config: Union[dict[str, XLoraConfig], XLoraConfig],
        adapter_name: str,
        torch_device: Optional[str] = None,
        ephemeral_gpu_offload: bool = False,
        autocast_adapter_dtype: bool = True,
        **kwargs,
    ) -> None:
        """
        Create a new X-LoRA model

        Args:
            model (`nn.Module`):
                Base model to apply X-LoRA to.
            config: ([`XLoraConfig`]):
                X-LoRA configuration object.
            adapter_name: (`str`):
                Adapter name for the X-LoRA adapter.
            torch_device (`str`, *optional*, defaults to None):
                (For loading the LoRA adapters) The device to load the adapter on. If `None`, the device will be
                inferred.
            ephemeral_gpu_offload (`bool`, *optional*, defaults to `False`):
                (For loading the LoRA adapters) Whether to use ephemeral GPU offloading for partially loaded modules.
                Defaults to `False`.
            autocast_adapter_dtype (`bool`, *optional*, defaults to `True`):
                (For loading the LoRA adapters) Whether to autocast the adapter dtype. Defaults to `True`. Right now,
                this will only cast adapter weights using float16 and bfloat16 to float32, as this is typically
                required for stable training, and only affect select PEFT tuners.
            kwargs: (`optional`):
                (For loading the LoRA adapters) Additional arguments to modify the way the adapter is loaded, e.g. the
                token for Hugging Face Hub.
        """

        nn.Module.__init__(self)

        if isinstance(config, dict):
            conf = config[adapter_name]
        else:
            conf = config

        # Create an empty LoraModel
        base_lora_config = copy.copy(conf)
        base_lora_config.target_modules = DUMMY_TARGET_MODULES
        # Imitate a LoraConfig, fields might need to be updated if LoraConfig is updated
        base_lora_config.layer_replication = None
        base_lora_config.bias = "none"
        lora_model = LoraModel(model, base_lora_config, adapter_name)

        self.xlora_config = conf
        self.lora_model = lora_model

        peft_config = conf

        if hasattr(model.config, "use_cache") and model.config.use_cache:
            raise ValueError("`use_cache` must be False")

        adapters_items = peft_config.adapters.items()
        if hasattr(self.xlora_config, "_subfolders"):
            adapters_items = zip(peft_config.adapters.items(), self.xlora_config._subfolders)
        else:
            adapters_items = peft_config.adapters.items()

        if hasattr(self.xlora_config, "_subfolders"):
            for i, (_adapter_name, model_id), subfolder in enumerate(adapters_items):
                _load_adapter_into_lora_model(
                    lora_model=self.lora_model,
                    adapter_name=str(i),
                    model_id=model_id,
                    torch_device=torch_device,
                    ephemeral_gpu_offload=ephemeral_gpu_offload,
                    autocast_adapter_dtype=autocast_adapter_dtype,
                    subfolder=subfolder,
                    **kwargs,
                )
        else:
            for i, (_adapter_name, model_id) in enumerate(adapters_items):
                _load_adapter_into_lora_model(
                    lora_model=self.lora_model,
                    adapter_name=str(i),
                    model_id=model_id,
                    torch_device=torch_device,
                    ephemeral_gpu_offload=ephemeral_gpu_offload,
                    autocast_adapter_dtype=autocast_adapter_dtype,
                    subfolder=None,
                    **kwargs,
                )

        self.lora_model.set_adapter(list(peft_config.adapters.keys()))

        self._maybe_freeze_all_adapters()

        total_swapped, device = convert_layers_to_xlora(
            model,
            self,
            peft_config,
        )

        n_classes = len(peft_config.adapters)
        xlora_classifier = XLoraClassifier(model, peft_config, n_classes, total_swapped, device)

        # Setup the model internal state
        self.internal_xlora_classifier = xlora_classifier
        self.internal_xlora_scalings = None  # type: ignore
        # Controlled by enable_adapter_layers or disable_adapter_layers
        self.disabled = False

    def _maybe_freeze_all_adapters(self):
        self.eval()
        if not self.xlora_config.use_trainable_adapters:
            for name, param in self.named_parameters():
                if "lora_" in name:
                    param.requires_grad = False

    def generate(self, *args, **kwargs):
        res = self.lora_model.generate(*args, **kwargs)  # type: ignore
        #  This is necessary because we use PeftModel.disable_adapter() which reenables the adapters
        self._maybe_freeze_all_adapters()
        return res

    @contextmanager
    def _enable_peft_forward_hooks(self, *generate_args, **generate_kwargs):
        def scalings_injection_hook(target, args, kwargs, scalings):
            # pre-forward hook to inject the adapter_names argument when using mixed adapter batches inference
            kwargs["scalings"] = scalings
            return args, kwargs

        handles_to_remove = None

        def pre_forward(module, *args, **kwargs):
            nonlocal handles_to_remove

            # =========================== Forward pass with "dummy" scalings ==================

            args_real = args[0]
            kwargs_real = args[1]
            kwargs_real.update(kwargs)

            dummy_scalings = self.internal_xlora_classifier.make_dummy_scalings(*args_real, **kwargs_real)

            hook_handles = []
            for module in self.modules():
                if isinstance(module, LoraLayer):
                    pre_forward = partial(scalings_injection_hook, scalings=dummy_scalings)
                    handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True)
                    hook_handles.append(handle)

            with torch.no_grad():
                self.lora_model.disable_adapter_layers()

                try:
                    scaling_pass_kwargs = kwargs_real.copy()
                    scaling_pass_kwargs["output_hidden_states"] = True
                    scaling_pass_kwargs["return_dict"] = True
                    try:
                        base_output = self.lora_model.model.forward(*args_real, **scaling_pass_kwargs)
                    finally:
                        # Clean everything up
                        for handle in hook_handles:
                            handle.remove()
                finally:
                    self.lora_model.enable_adapter_layers()

            xlora_scalings = self.internal_xlora_classifier(result=base_output, *args_real, **kwargs_real)

            # =========================== Real forward pass with calculated scalings ==================

            hook_handles = []
            for module in self.modules():
                if isinstance(module, LoraLayer):
                    pre_forward = partial(scalings_injection_hook, scalings=xlora_scalings)
                    handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True)
                    hook_handles.append(handle)

            handles_to_remove = hook_handles

        if not self.disabled:
            forward_handle = self.lora_model.model.register_forward_pre_hook(pre_forward, with_kwargs=True)

        # Run the forward pass: first the scaling pass in the hook, and then with the base model
        yield

        if not self.disabled:
            # TODO(EricLBuehler): If we get a forward exception, we may have multiple forward hooks.
            for handle in handles_to_remove:
                handle.remove()
            forward_handle.remove()

    def __getattr__(self, name: str):
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            if name == "lora_model":  # see #1892: prevent infinite recursion if class is not initialized
                raise
            return getattr(self.lora_model, name)

    @staticmethod
    def _prepare_adapter_config(peft_config, _model_config):
        # Handle X-LoRA case
        return peft_config

    """
    Does nothing. X-LoRA needs adapters to be frozen.
    """

    def _mark_only_adapters_as_trainable(self) -> None: ...

    """
    This enables the X-LoRA adapter.
    """

    def enable_adapter_layers(self) -> None:
        self.disabled = False

    """
    This diasables the X-LoRA adapter.
    """

    def disable_adapter_layers(self) -> None:
        self.disabled = True

    def _create_and_replace(
        self,
        lora_config,
        adapter_name,
        target,
        target_name,
        parent,
        current_key,
    ):
        # Does nothing because XLoraModel has no target modules
        pass

    @staticmethod
    def _check_target_module_exists(lora_config, key):
        # Does nothing because XLoraModel has no target modules
        return False

    def forward(self, *args, **kwargs):
        return self.lora_model.model(*args, **kwargs)

    def set_topk_lora(self, value: Optional[int]):
        """
        Sparsely select the specified top_k LoRA experts instead of the default dense method. Set to None to use dense.
        This is reflected in the config.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier.config.top_k_lora = value

    def set_global_scaling_weight(self, weight: float):
        """
        Set the global LoRA weight, a scalar to multiply the output of each LoRA adapter by. This is by default 1. This
        is reflected in the config.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier.config.global_scaling_weight = weight

    def set_scaling_pass_value(self, value: float | None):
        """
        Set the scaling pass value, the value to set the scalings to during the scaling pass. If the value is None, the
        scaling pass value will be 1/n where n is the number of adapters.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier._set_override_scaling_pass_value(value)

    def get_global_scaling_weight(self) -> float:
        """
        Get the global LoRA weight.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        return classifier.config.global_scaling_weight

    def get_latest_scalings(self) -> Optional[torch.Tensor]:
        """
        Returns the latest scalings prediction, or None if no scalings have been predicted. The tensor is of shape
        (batch_size, seq_len, n_layers, n_classes).
        """
        return self.internal_xlora_scalings

    def get_scalings_log(self) -> list[torch.Tensor]:
        """
        Returns a shallow (only copying the list itself not the tensors) copy of the list containing the scalings log.
        Editing the list does not change the underlying log. The tensors are of shape (batch_size, seq_len, n_layers,
        n_classes). The seq_len dim may vary with input dimension.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        return classifier.log_scalings.copy()

    def enable_scalings_logging(self):
        """
        Enable scalings logging.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier.scalings_logging = True

    def disable_scalings_logging(self):
        """
        Disable scalings logging, without clearing the log.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier.scalings_logging = False

    def clear_scalings_log(self):
        """
        Clear the scalings log.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        classifier.log_scalings.clear()

    def get_bucketed_scalings_log(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]:
        """
        Returns bucketed scalings, bucketed by seq_len. Each value consists of the positions (the first) and the
        associated tensors. The positions are paired with the associated tensors and give the position in the scaling
        log.
        """
        classifier: XLoraClassifier = self.internal_xlora_classifier  # type: ignore
        return classifier._get_bucketed_scalings()