|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import copy |
|
import warnings |
|
from typing import Any, Optional |
|
|
|
import torch |
|
|
|
from peft.import_utils import is_hqq_available |
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
from peft.utils.other import transpose |
|
|
|
from .layer import LoraLayer |
|
|
|
|
|
if is_hqq_available(): |
|
from hqq.core.quantize import HQQLinear |
|
|
|
class HqqLoraLinear(torch.nn.Module, LoraLayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer: torch.nn.Module, |
|
adapter_name: str, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
init_lora_weights: bool = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
**kwargs, |
|
) -> None: |
|
if lora_bias: |
|
raise ValueError(f"{self.__class__.__name__} does not support lora_bias yet, set it to False") |
|
|
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer) |
|
self.fan_in_fan_out = False |
|
|
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
lora_bias=lora_bias, |
|
) |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`list[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
Defaults to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
|
|
layer = self.get_base_layer() |
|
quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} |
|
lora_data = self.get_delta_weight(active_adapter) |
|
|
|
output = layer.dequantize() |
|
if not self.use_dora[active_adapter]: |
|
w_data = output + lora_data |
|
else: |
|
|
|
|
|
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach() |
|
|
|
|
|
|
|
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) |
|
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm |
|
w_data = dora_factor.view(-1, 1) * (output + lora_data) |
|
|
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) |
|
quant_config.pop("offload_meta", None) |
|
new_hqq_layer.quantize(w_data, **quant_config) |
|
self.base_layer = new_hqq_layer |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
|
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
|
|
lora_data = self.get_delta_weight(active_adapter) |
|
layer = self.get_base_layer() |
|
quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} |
|
output = layer.dequantize() |
|
|
|
if not self.use_dora[active_adapter]: |
|
w_data = output - lora_data |
|
else: |
|
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") |
|
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm |
|
w_data = output.data / dora_factor.view(-1, 1) - lora_data |
|
|
|
new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) |
|
quant_config.pop("offload_meta", None) |
|
new_hqq_layer.quantize(w_data, **quant_config) |
|
self.base_layer = new_hqq_layer |
|
|
|
def get_delta_weight(self, adapter): |
|
return ( |
|
transpose( |
|
self.lora_B[adapter].weight @ self.lora_A[adapter].weight, |
|
False, |
|
) |
|
* self.scaling[adapter] |
|
) |
|
|
|
def _mixed_batch_forward( |
|
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any |
|
) -> torch.Tensor: |
|
|
|
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
|
unique_adapters = set(adapter_names) |
|
sub_batch_indices_list = [] |
|
for adapter in unique_adapters: |
|
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter]) |
|
|
|
for i, active_adapter in enumerate(unique_adapters): |
|
if active_adapter == "__base__": |
|
continue |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
|
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
if requires_conversion: |
|
expected_dtype = result.dtype |
|
compute_dtype = lora_A.weight.dtype |
|
if x.dtype != compute_dtype: |
|
x = x.to(compute_dtype) |
|
|
|
|
|
|
|
sub_batch = x[sub_batch_indices_list[i]] |
|
output = lora_B(lora_A(dropout(sub_batch))) * scaling |
|
if requires_conversion: |
|
output = output.to(expected_dtype) |
|
result[sub_batch_indices_list[i]] += output |
|
|
|
return result |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
self._check_forward_args(x, *args, **kwargs) |
|
adapter_names = kwargs.pop("adapter_names", None) |
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif adapter_names is not None: |
|
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
|
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
if requires_conversion: |
|
expected_dtype = result.dtype |
|
compute_dtype = lora_A.weight.dtype |
|
if x.dtype != compute_dtype: |
|
x = x.to(compute_dtype) |
|
|
|
if not self.use_dora[active_adapter]: |
|
result = result + lora_B(lora_A(dropout(x))) * scaling |
|
else: |
|
if isinstance(dropout, torch.nn.Identity) or not self.training: |
|
base_result = result |
|
else: |
|
x = dropout(x) |
|
base_result = None |
|
|
|
result = result + self.lora_magnitude_vector[active_adapter]( |
|
x, |
|
lora_A=lora_A, |
|
lora_B=lora_B, |
|
scaling=scaling, |
|
base_layer=self.get_base_layer(), |
|
base_result=base_result, |
|
) |
|
if requires_conversion: |
|
result = result.to(expected_dtype) |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
|
|
def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs): |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
if is_hqq_available() and isinstance(target_base_layer, HQQLinear): |
|
new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs) |
|
|
|
return new_module |
|
|