|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
import operator |
|
import warnings |
|
from contextlib import contextmanager |
|
from dataclasses import asdict, replace |
|
from enum import Enum |
|
from functools import partial, reduce |
|
from typing import Literal, Optional |
|
|
|
import torch |
|
from torch import nn |
|
from tqdm import tqdm |
|
|
|
from peft.import_utils import is_bnb_4bit_available, is_bnb_available |
|
from peft.tuners.tuners_utils import ( |
|
BaseTuner, |
|
BaseTunerLayer, |
|
check_target_module_exists, |
|
onload_layer, |
|
replicate_layers, |
|
) |
|
from peft.utils import ( |
|
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, |
|
ModulesToSaveWrapper, |
|
_freeze_adapter, |
|
_get_submodules, |
|
get_peft_model_state_dict, |
|
get_quantization_config, |
|
) |
|
from peft.utils.merge_utils import dare_linear, dare_ties, magnitude_prune, task_arithmetic, ties |
|
from peft.utils.other import get_pattern_key |
|
|
|
from .aqlm import dispatch_aqlm |
|
from .awq import dispatch_awq |
|
from .config import LoraConfig |
|
from .eetq import dispatch_eetq |
|
from .gptq import dispatch_gptq |
|
from .hqq import dispatch_hqq |
|
from .layer import Conv2d, LoraLayer, dispatch_default |
|
from .torchao import dispatch_torchao |
|
from .tp_layer import dispatch_megatron |
|
|
|
|
|
def _adapter_names_pre_forward_hook(target, args, kwargs, adapter_names): |
|
|
|
kwargs["adapter_names"] = adapter_names |
|
return args, kwargs |
|
|
|
|
|
class LoraModel(BaseTuner): |
|
""" |
|
Creates Low Rank Adapter (LoRA) model from a pretrained transformers model. |
|
|
|
The method is described in detail in https://arxiv.org/abs/2106.09685. |
|
|
|
Args: |
|
model ([`torch.nn.Module`]): The model to be adapted. |
|
config ([`LoraConfig`]): The configuration of the Lora model. |
|
adapter_name (`str`): The name of the adapter, defaults to `"default"`. |
|
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): |
|
Create empty adapter weights on meta device. Useful to speed up the loading process. |
|
|
|
Returns: |
|
`torch.nn.Module`: The Lora model. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForSeq2SeqLM |
|
>>> from peft import LoraModel, LoraConfig |
|
|
|
>>> config = LoraConfig( |
|
... task_type="SEQ_2_SEQ_LM", |
|
... r=8, |
|
... lora_alpha=32, |
|
... target_modules=["q", "v"], |
|
... lora_dropout=0.01, |
|
... ) |
|
|
|
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") |
|
>>> lora_model = LoraModel(model, config, "default") |
|
``` |
|
|
|
```py |
|
>>> import torch |
|
>>> import transformers |
|
>>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training |
|
|
|
>>> rank = ... |
|
>>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"] |
|
>>> config = LoraConfig( |
|
... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" |
|
... ) |
|
>>> quantization_config = transformers.BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
>>> tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
... "kakaobrain/kogpt", |
|
... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b |
|
... bos_token="[BOS]", |
|
... eos_token="[EOS]", |
|
... unk_token="[UNK]", |
|
... pad_token="[PAD]", |
|
... mask_token="[MASK]", |
|
... ) |
|
>>> model = transformers.GPTJForCausalLM.from_pretrained( |
|
... "kakaobrain/kogpt", |
|
... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b |
|
... pad_token_id=tokenizer.eos_token_id, |
|
... use_cache=False, |
|
... device_map={"": rank}, |
|
... torch_dtype=torch.float16, |
|
... quantization_config=quantization_config, |
|
... ) |
|
>>> model = prepare_model_for_kbit_training(model) |
|
>>> lora_model = get_peft_model(model, config) |
|
``` |
|
|
|
**Attributes**: |
|
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. |
|
- **peft_config** ([`LoraConfig`]): The configuration of the Lora model. |
|
""" |
|
|
|
prefix: str = "lora_" |
|
|
|
def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False) -> None: |
|
super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) |
|
|
|
def _check_new_adapter_config(self, config: LoraConfig) -> None: |
|
""" |
|
A helper method to check the config when a new adapter is being added. |
|
|
|
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. |
|
|
|
""" |
|
|
|
|
|
if (len(self.peft_config) > 1) and (config.bias != "none"): |
|
raise ValueError( |
|
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " |
|
"set bias to 'none' for all adapters." |
|
) |
|
|
|
@staticmethod |
|
def _check_target_module_exists(lora_config, key): |
|
return check_target_module_exists(lora_config, key) |
|
|
|
def _prepare_model(self, peft_config: LoraConfig, model: nn.Module): |
|
r""" |
|
A private method to modify the model structure before adapter is applied. |
|
|
|
Args: |
|
peft_config (`PeftConfig`): |
|
The prepared adapter config. |
|
model (`nn.Module`): |
|
The model that is going to be adapted. |
|
""" |
|
if peft_config.layer_replication: |
|
replicate_layers(model, peft_config.layer_replication) |
|
|
|
def _create_and_replace( |
|
self, |
|
lora_config, |
|
adapter_name, |
|
target, |
|
target_name, |
|
parent, |
|
current_key, |
|
): |
|
if current_key is None: |
|
raise ValueError("Current Key shouldn't be `None`") |
|
|
|
|
|
r_key = get_pattern_key(lora_config.rank_pattern.keys(), current_key) |
|
alpha_key = get_pattern_key(lora_config.alpha_pattern.keys(), current_key) |
|
r = lora_config.rank_pattern.get(r_key, lora_config.r) |
|
alpha = lora_config.alpha_pattern.get(alpha_key, lora_config.lora_alpha) |
|
|
|
kwargs = { |
|
"r": r, |
|
"lora_alpha": alpha, |
|
"lora_dropout": lora_config.lora_dropout, |
|
"fan_in_fan_out": lora_config.fan_in_fan_out, |
|
"init_lora_weights": lora_config.init_lora_weights, |
|
"use_rslora": lora_config.use_rslora, |
|
"use_dora": lora_config.use_dora, |
|
"ephemeral_gpu_offload": lora_config.runtime_config.ephemeral_gpu_offload, |
|
"lora_bias": lora_config.lora_bias, |
|
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False), |
|
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False), |
|
"target_name": target_name, |
|
"current_key": current_key, |
|
"num_experts": lora_config.num_experts, |
|
"expert_rank": lora_config.expert_rank, |
|
"expert_alpha": lora_config.expert_alpha, |
|
"top_k": lora_config.top_k, |
|
"blc_alpha": lora_config.blc_alpha, |
|
"blc_weight": lora_config.blc_weight, |
|
} |
|
|
|
try: |
|
kwargs["get_apply_tensor_subclass"] = operator.attrgetter( |
|
"hf_quantizer.quantization_config.get_apply_tensor_subclass" |
|
)(self.model) |
|
except AttributeError: |
|
pass |
|
|
|
quant_methods = ["gptq", "aqlm", "awq"] |
|
for quant_method in quant_methods: |
|
quantization_config = get_quantization_config(self.model, method=quant_method) |
|
if quantization_config is not None: |
|
kwargs[f"{quant_method}_quantization_config"] = quantization_config |
|
|
|
|
|
from peft.tuners.adalora import AdaLoraLayer |
|
|
|
if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer): |
|
target.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=alpha, |
|
lora_dropout=lora_config.lora_dropout, |
|
init_lora_weights=lora_config.init_lora_weights, |
|
use_rslora=lora_config.use_rslora, |
|
use_dora=lora_config.use_dora, |
|
lora_bias=lora_config.lora_bias, |
|
) |
|
else: |
|
new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs) |
|
if adapter_name not in self.active_adapters: |
|
|
|
new_module.requires_grad_(False) |
|
self._replace_module(parent, target_name, new_module, target) |
|
|
|
def _replace_module(self, parent, child_name, new_module, child): |
|
setattr(parent, child_name, new_module) |
|
|
|
|
|
|
|
|
|
if hasattr(child, "base_layer"): |
|
child = child.base_layer |
|
|
|
if not hasattr(new_module, "base_layer"): |
|
if hasattr(new_module, "W_q"): |
|
new_module.W_q = child.W_q |
|
else: |
|
new_module.weight = child.weight |
|
if hasattr(child, "bias"): |
|
new_module.bias = child.bias |
|
|
|
if getattr(child, "state", None) is not None: |
|
if hasattr(new_module, "base_layer"): |
|
new_module.base_layer.state = child.state |
|
else: |
|
new_module.state = child.state |
|
new_module.to(child.weight.device) |
|
|
|
meta = torch.device("meta") |
|
|
|
for name, module in new_module.named_modules(): |
|
if (self.prefix in name) or ("ranknum" in name): |
|
weight = ( |
|
child.qweight |
|
if hasattr(child, "qweight") |
|
else child.W_q |
|
if hasattr(child, "W_q") |
|
else child.weight |
|
if hasattr(child, "weight") |
|
else next(child.parameters()) |
|
) |
|
if not any(p.device == meta for p in module.parameters()): |
|
module.to(weight.device) |
|
|
|
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: |
|
for n, p in model.named_parameters(): |
|
if self.prefix not in n: |
|
p.requires_grad = False |
|
|
|
for active_adapter in self.active_adapters: |
|
bias = self.peft_config[active_adapter].bias |
|
if bias == "none": |
|
continue |
|
|
|
if bias == "all": |
|
for n, p in model.named_parameters(): |
|
if "bias" in n: |
|
p.requires_grad = True |
|
elif bias == "lora_only": |
|
for m in model.modules(): |
|
if isinstance(m, LoraLayer) and hasattr(m, "bias") and m.bias is not None: |
|
m.bias.requires_grad = True |
|
else: |
|
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") |
|
|
|
@staticmethod |
|
def _create_new_module(lora_config, adapter_name, target, **kwargs): |
|
|
|
|
|
dispatchers = [] |
|
|
|
if lora_config._custom_modules: |
|
|
|
|
|
def dynamic_dispatch_func(target, adapter_name, lora_config, **kwargs): |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
for key, custom_cls in lora_config._custom_modules.items(): |
|
if isinstance(target_base_layer, key): |
|
new_module = custom_cls(target, adapter_name, **kwargs) |
|
break |
|
|
|
return new_module |
|
|
|
dispatchers.append(dynamic_dispatch_func) |
|
|
|
|
|
if is_bnb_available(): |
|
from .bnb import dispatch_bnb_8bit |
|
|
|
dispatchers.append(dispatch_bnb_8bit) |
|
|
|
if is_bnb_4bit_available(): |
|
from .bnb import dispatch_bnb_4bit |
|
|
|
dispatchers.append(dispatch_bnb_4bit) |
|
|
|
dispatchers.extend( |
|
[ |
|
dispatch_eetq, |
|
dispatch_aqlm, |
|
dispatch_awq, |
|
dispatch_gptq, |
|
dispatch_hqq, |
|
dispatch_torchao, |
|
dispatch_megatron, |
|
dispatch_default, |
|
] |
|
) |
|
|
|
new_module = None |
|
for dispatcher in dispatchers: |
|
new_module = dispatcher(target, adapter_name, lora_config=lora_config, **kwargs) |
|
if new_module is not None: |
|
break |
|
|
|
if new_module is None: |
|
|
|
raise ValueError( |
|
f"Target module {target} is not supported. Currently, only the following modules are supported: " |
|
"`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, " |
|
"`transformers.pytorch_utils.Conv1D`." |
|
) |
|
|
|
return new_module |
|
|
|
def __getattr__(self, name: str): |
|
"""Forward missing attributes to the wrapped module.""" |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
if name == "model": |
|
raise |
|
return getattr(self.model, name) |
|
|
|
def get_peft_config_as_dict(self, inference: bool = False): |
|
config_dict = {} |
|
for key, value in self.peft_config.items(): |
|
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} |
|
if inference: |
|
config["inference_mode"] = True |
|
config_dict[key] = config |
|
return config |
|
|
|
def _set_adapter_layers(self, enabled: bool = True) -> None: |
|
for module in self.model.modules(): |
|
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): |
|
module.enable_adapters(enabled) |
|
|
|
def enable_adapter_layers(self) -> None: |
|
"""Enable all adapters. |
|
|
|
Call this if you have previously disabled all adapters and want to re-enable them. |
|
""" |
|
self._set_adapter_layers(enabled=True) |
|
|
|
def disable_adapter_layers(self) -> None: |
|
"""Disable all adapters. |
|
|
|
When disabling all adapters, the model output corresponds to the output of the base model. |
|
""" |
|
for active_adapter in self.active_adapters: |
|
val = self.peft_config[active_adapter].bias |
|
if val != "none": |
|
msg = ( |
|
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " |
|
"output as the the base model would without adaption." |
|
) |
|
warnings.warn(msg) |
|
self._set_adapter_layers(enabled=False) |
|
|
|
def set_adapter(self, adapter_name: str | list[str]) -> None: |
|
"""Set the active adapter(s). |
|
|
|
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is |
|
not desired, use the following code. |
|
|
|
```py |
|
>>> for name, param in model_peft.named_parameters(): |
|
... if ...: # some check on name (ex. if 'lora' in name) |
|
... param.requires_grad = False |
|
``` |
|
|
|
Args: |
|
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated. |
|
""" |
|
for module in self.model.modules(): |
|
if isinstance(module, LoraLayer): |
|
if module.merged: |
|
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") |
|
module.unmerge() |
|
module.set_adapter(adapter_name) |
|
self.active_adapter = adapter_name |
|
|
|
@contextmanager |
|
def _enable_peft_forward_hooks(self, *args, **kwargs): |
|
|
|
adapter_names = kwargs.pop("adapter_names", None) |
|
if adapter_names is None: |
|
|
|
yield |
|
return |
|
|
|
if self.training: |
|
raise ValueError("Cannot pass `adapter_names` when the model is in training mode.") |
|
|
|
|
|
|
|
|
|
expected_adapters = set() |
|
for layer in self.modules(): |
|
if isinstance(layer, LoraLayer): |
|
expected_adapters |= layer.lora_A.keys() |
|
expected_adapters |= layer.lora_embedding_A.keys() |
|
unique_adapters = {name for name in adapter_names if name != "__base__"} |
|
unexpected_adapters = unique_adapters - expected_adapters |
|
if unexpected_adapters: |
|
raise ValueError(f"Trying to infer with non-existing adapter(s): {', '.join(sorted(unexpected_adapters))}") |
|
|
|
hook_handles = [] |
|
for module in self.modules(): |
|
if isinstance(module, LoraLayer) or isinstance(module, ModulesToSaveWrapper): |
|
pre_forward = partial(_adapter_names_pre_forward_hook, adapter_names=adapter_names) |
|
handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True) |
|
hook_handles.append(handle) |
|
|
|
yield |
|
|
|
for handle in hook_handles: |
|
handle.remove() |
|
|
|
def _check_merge_allowed(self): |
|
"""Verify that the configuration supports merging. |
|
|
|
Currently gptq quantization and replicated layers do not support merging. |
|
""" |
|
super()._check_merge_allowed() |
|
if getattr(self.model, "quantization_method", None) == "gptq": |
|
raise ValueError("Cannot merge LORA layers when the model is gptq quantized") |
|
if self.peft_config.get("layer_replication"): |
|
raise ValueError("Cannot merge LORA layers when base model layers are replicated") |
|
|
|
@staticmethod |
|
def _prepare_adapter_config(peft_config, model_config): |
|
if peft_config.target_modules is None: |
|
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: |
|
raise ValueError("Please specify `target_modules` in `peft_config`") |
|
peft_config.target_modules = set( |
|
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]] |
|
) |
|
return peft_config |
|
|
|
def _unload_and_optionally_merge( |
|
self, |
|
merge=True, |
|
progressbar: bool = False, |
|
safe_merge: bool = False, |
|
adapter_names: Optional[list[str]] = None, |
|
): |
|
if merge: |
|
self._check_merge_allowed() |
|
|
|
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] |
|
desc = "Unloading " + ("and merging " if merge else "") + "model" |
|
for key in tqdm(key_list, disable=not progressbar, desc=desc): |
|
try: |
|
parent, target, target_name = _get_submodules(self.model, key) |
|
except AttributeError: |
|
continue |
|
with onload_layer(target): |
|
if hasattr(target, "base_layer"): |
|
if merge: |
|
target.merge(safe_merge=safe_merge, adapter_names=adapter_names) |
|
self._replace_module(parent, target_name, target.get_base_layer(), target) |
|
elif isinstance(target, ModulesToSaveWrapper): |
|
|
|
new_module = target.modules_to_save[target.active_adapter] |
|
if hasattr(new_module, "base_layer"): |
|
|
|
if merge: |
|
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) |
|
new_module = new_module.get_base_layer() |
|
setattr(parent, target_name, new_module) |
|
|
|
return self.model |
|
|
|
def _check_add_weighted_adapter( |
|
self, adapters: list[str], combination_type: str, svd_rank: int | None |
|
) -> tuple[str, int, str]: |
|
""" |
|
Helper function to check if the arguments to add_weighted_adapter are valid and compatible with the underlying |
|
model. |
|
""" |
|
for adapter in adapters: |
|
if adapter not in list(self.peft_config.keys()): |
|
raise ValueError(f"Adapter {adapter} does not exist") |
|
|
|
|
|
|
|
|
|
modules_to_save_wrappers = [module for module in self.modules() if isinstance(module, ModulesToSaveWrapper)] |
|
problematic_wrappers = [ |
|
wrapper |
|
for wrapper in modules_to_save_wrappers |
|
if sum(adapter in wrapper.modules_to_save for adapter in adapters) > 1 |
|
] |
|
if problematic_wrappers: |
|
raise ValueError( |
|
"Cannot add weighted adapters if they target the same module with modules_to_save, but found " |
|
f"{len(problematic_wrappers)} such instance(s)." |
|
) |
|
|
|
|
|
combination_type = "linear" if len(adapters) == 1 else combination_type |
|
|
|
adapters_ranks = [self.peft_config[adapter].r for adapter in adapters] |
|
if combination_type in ("linear", "ties", "dare_ties", "dare_linear", "magnitude_prune"): |
|
|
|
if len(set(adapters_ranks)) != 1: |
|
raise ValueError( |
|
"All adapters must have the same r value when using combination_type linear, ties, dare_ties or " |
|
"dare_linear." |
|
) |
|
new_rank = adapters_ranks[0] |
|
elif combination_type == "cat": |
|
|
|
|
|
new_rank = sum(adapters_ranks) |
|
elif combination_type.endswith("svd"): |
|
|
|
new_rank = svd_rank or max(adapters_ranks) |
|
else: |
|
raise ValueError(f"Invalid combination_type: {combination_type}") |
|
|
|
target_module_types = [type(self.peft_config[adapter].target_modules) for adapter in adapters] |
|
if not target_module_types: |
|
raise ValueError(f"Found no adapter matching the names in {adapters}") |
|
if len(set(target_module_types)) > 1: |
|
raise ValueError( |
|
"all adapter configs should follow the same target modules type. " |
|
"Combining adapters with `target_modules` type being a mix of list/set and string is not supported." |
|
) |
|
|
|
if target_module_types[0] is str: |
|
new_target_modules = "|".join(f"({self.peft_config[adapter].target_modules})" for adapter in adapters) |
|
elif target_module_types[0] is set: |
|
new_target_modules = reduce( |
|
operator.or_, (self.peft_config[adapter].target_modules for adapter in adapters) |
|
) |
|
else: |
|
raise TypeError(f"Invalid type {target_module_types[0]} found in target_modules") |
|
|
|
return combination_type, new_rank, new_target_modules |
|
|
|
def add_weighted_adapter( |
|
self, |
|
adapters: list[str], |
|
weights: list[float], |
|
adapter_name: str, |
|
combination_type: str = "svd", |
|
svd_rank: int | None = None, |
|
svd_clamp: int | None = None, |
|
svd_full_matrices: bool = True, |
|
svd_driver: str | None = None, |
|
density: float | None = None, |
|
majority_sign_method: Literal["total", "frequency"] = "total", |
|
) -> None: |
|
""" |
|
This method adds a new adapter by merging the given adapters with the given weights. |
|
|
|
When using the `cat` combination_type you should be aware that rank of the resulting adapter will be equal to |
|
the sum of all adapters ranks. So it's possible that the mixed adapter may become too big and result in OOM |
|
errors. |
|
|
|
Args: |
|
adapters (`list`): |
|
List of adapter names to be merged. |
|
weights (`list`): |
|
List of weights for each adapter. |
|
adapter_name (`str`): |
|
Name of the new adapter. |
|
combination_type (`str`): |
|
The merging type can be one of [`svd`, `linear`, `cat`, `ties`, `ties_svd`, `dare_ties`, `dare_linear`, |
|
`dare_ties_svd`, `dare_linear_svd`, `magnitude_prune`, `magnitude_prune_svd`]. When using the `cat` |
|
combination_type, the rank of the resulting adapter is equal to the sum of all adapters ranks (the |
|
mixed adapter may be too big and result in OOM errors). |
|
svd_rank (`int`, *optional*): |
|
Rank of output adapter for svd. If None provided, will use max rank of merging adapters. |
|
svd_clamp (`float`, *optional*): |
|
A quantile threshold for clamping SVD decomposition output. If None is provided, do not perform |
|
clamping. Defaults to None. |
|
svd_full_matrices (`bool`, *optional*): |
|
Controls whether to compute the full or reduced SVD, and consequently, the shape of the returned |
|
tensors U and Vh. Defaults to True. |
|
svd_driver (`str`, *optional*): |
|
Name of the cuSOLVER method to be used. This keyword argument only works when merging on CUDA. Can be |
|
one of [None, `gesvd`, `gesvdj`, `gesvda`]. For more info please refer to `torch.linalg.svd` |
|
documentation. Defaults to None. |
|
density (`float`, *optional*): |
|
Value between 0 and 1. 0 means all values are pruned and 1 means no values are pruned. Should be used |
|
with [`ties`, `ties_svd`, `dare_ties`, `dare_linear`, `dare_ties_svd`, `dare_linear_svd`, |
|
`magnintude_prune`, `magnitude_prune_svd`] |
|
majority_sign_method (`str`): |
|
The method, should be one of ["total", "frequency"], to use to get the magnitude of the sign values. |
|
Should be used with [`ties`, `ties_svd`, `dare_ties`, `dare_ties_svd`] |
|
""" |
|
|
|
if adapter_name in list(self.peft_config.keys()): |
|
return |
|
|
|
combination_type, new_rank, new_target_modules = self._check_add_weighted_adapter( |
|
adapters=adapters, |
|
combination_type=combination_type, |
|
svd_rank=svd_rank, |
|
) |
|
|
|
self.peft_config[adapter_name] = replace( |
|
self.peft_config[adapters[0]], |
|
r=new_rank, |
|
lora_alpha=new_rank, |
|
target_modules=new_target_modules, |
|
) |
|
self.inject_adapter(self.model, adapter_name) |
|
|
|
|
|
_freeze_adapter(self.model, adapter_name) |
|
|
|
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] |
|
for key in key_list: |
|
_, target, _ = _get_submodules(self.model, key) |
|
if isinstance(target, LoraLayer): |
|
if adapter_name in target.lora_A: |
|
target_lora_A = target.lora_A[adapter_name].weight |
|
target_lora_B = target.lora_B[adapter_name].weight |
|
elif adapter_name in target.lora_embedding_A: |
|
target_lora_A = target.lora_embedding_A[adapter_name] |
|
target_lora_B = target.lora_embedding_B[adapter_name] |
|
else: |
|
continue |
|
|
|
target_lora_A.data = target_lora_A.data * 0.0 |
|
target_lora_B.data = target_lora_B.data * 0.0 |
|
if combination_type == "cat": |
|
loras_A, loras_B = [], [] |
|
for adapter, weight in zip(adapters, weights): |
|
if adapter in target.lora_A: |
|
current_adapter_lora_A = target.lora_A[adapter].weight |
|
current_adapter_lora_B = target.lora_B[adapter].weight |
|
elif adapter in target.lora_embedding_A: |
|
current_adapter_lora_A = target.lora_embedding_A[adapter] |
|
current_adapter_lora_B = target.lora_embedding_B[adapter] |
|
else: |
|
continue |
|
loras_A.append(current_adapter_lora_A.data * weight * target.scaling[adapter]) |
|
loras_B.append(current_adapter_lora_B.data) |
|
|
|
if len(loras_A) == 0: |
|
raise ValueError("No matching LoRAs found. Please raise an issue on GitHub.") |
|
loras_A = torch.cat(loras_A, dim=0) |
|
loras_B = torch.cat(loras_B, dim=1) |
|
target_lora_A.data[: loras_A.shape[0], :] = loras_A |
|
target_lora_B.data[:, : loras_B.shape[1]] = loras_B |
|
elif combination_type in [ |
|
"svd", |
|
"ties_svd", |
|
"dare_linear_svd", |
|
"dare_ties_svd", |
|
"magnitude_prune_svd", |
|
]: |
|
target_lora_A.data, target_lora_B.data = self._svd_generalized_task_arithmetic_weighted_adapter( |
|
combination_type, |
|
adapters, |
|
weights, |
|
new_rank, |
|
target, |
|
target_lora_A, |
|
target_lora_B, |
|
density, |
|
majority_sign_method, |
|
svd_clamp, |
|
full_matrices=svd_full_matrices, |
|
driver=svd_driver, |
|
) |
|
elif combination_type in ["linear", "ties", "dare_linear", "dare_ties", "magnitude_prune"]: |
|
target_lora_A.data, target_lora_B.data = self._generalized_task_arithmetic_weighted_adapter( |
|
combination_type, adapters, weights, target, density, majority_sign_method |
|
) |
|
|
|
def _svd_generalized_task_arithmetic_weighted_adapter( |
|
self, |
|
combination_type, |
|
adapters, |
|
weights, |
|
new_rank, |
|
target, |
|
target_lora_A, |
|
target_lora_B, |
|
density, |
|
majority_sign_method, |
|
clamp=None, |
|
full_matrices=True, |
|
driver=None, |
|
): |
|
valid_adapters = [] |
|
valid_weights = [] |
|
is_embedding = any(adapter in target.lora_embedding_A for adapter in adapters) |
|
for adapter, weight in zip(adapters, weights): |
|
if adapter in target.lora_A or adapter in target.lora_embedding_A: |
|
valid_adapters.append(adapter) |
|
valid_weights.append(weight * target.scaling[adapter]) |
|
|
|
|
|
if len(valid_adapters) == 0: |
|
raise ValueError("No matching LoRAs found. Please raise an issue on Github.") |
|
delta_weight = [target.get_delta_weight(adapter) for adapter in valid_adapters] |
|
valid_weights = torch.tensor(valid_weights).to(delta_weight[0].device) |
|
if combination_type == "svd": |
|
delta_weight = task_arithmetic(delta_weight, valid_weights) |
|
elif combination_type == "ties_svd": |
|
delta_weight = ties(delta_weight, valid_weights, density, majority_sign_method) |
|
elif combination_type == "dare_linear_svd": |
|
delta_weight = dare_linear(delta_weight, valid_weights, density) |
|
elif combination_type == "dare_ties_svd": |
|
delta_weight = dare_ties(delta_weight, valid_weights, density, majority_sign_method) |
|
elif combination_type == "magnitude_prune_svd": |
|
delta_weight = magnitude_prune(delta_weight, valid_weights, density) |
|
else: |
|
raise ValueError(f"Invalid value passed to combination type: {combination_type}") |
|
|
|
conv2d = isinstance(target, Conv2d) |
|
if conv2d: |
|
conv2d_1x1 = target.weight.size()[2:4] == (1, 1) |
|
if not conv2d_1x1: |
|
delta_weight = delta_weight.flatten(start_dim=1) |
|
else: |
|
delta_weight = delta_weight.squeeze() |
|
if (hasattr(target, "fan_in_fan_out") and target.fan_in_fan_out) or is_embedding: |
|
delta_weight = delta_weight.T |
|
|
|
|
|
U, S, Vh = torch.linalg.svd(delta_weight, full_matrices=full_matrices, driver=driver) |
|
U = U[:, :new_rank] |
|
S = S[:new_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:new_rank, :] |
|
if clamp is not None: |
|
dist = torch.cat([U.flatten(), Vh.flatten()]) |
|
hi_val = torch.quantile(dist, clamp) |
|
low_val = -hi_val |
|
U = U.clamp(low_val, hi_val) |
|
Vh = Vh.clamp(low_val, hi_val) |
|
if conv2d: |
|
U = U.reshape(target_lora_B.data.shape) |
|
Vh = Vh.reshape(target_lora_A.data.shape) |
|
return Vh, U |
|
|
|
def _generalized_task_arithmetic_weighted_adapter( |
|
self, |
|
combination_type, |
|
adapters, |
|
weights, |
|
target, |
|
density, |
|
majority_sign_method, |
|
): |
|
|
|
valid_weights = [] |
|
lora_A_deltas = [] |
|
lora_B_deltas = [] |
|
for adapter, weight in zip(adapters, weights): |
|
if adapter in target.lora_A: |
|
current_adapter_lora_A = target.lora_A[adapter].weight |
|
current_adapter_lora_B = target.lora_B[adapter].weight |
|
elif adapter in target.lora_embedding_A: |
|
current_adapter_lora_A = target.lora_embedding_A[adapter] |
|
current_adapter_lora_B = target.lora_embedding_B[adapter] |
|
else: |
|
continue |
|
valid_weights.append(math.sqrt(weight * target.scaling[adapter])) |
|
lora_A_deltas.append(current_adapter_lora_A.data) |
|
lora_B_deltas.append(current_adapter_lora_B.data) |
|
valid_weights = torch.tensor(valid_weights).to(lora_A_deltas[0].device) |
|
lora_deltas = [lora_A_deltas, lora_B_deltas] |
|
dtype = lora_A_deltas[0].dtype |
|
for i, task_tensors in enumerate(lora_deltas): |
|
if combination_type == "linear": |
|
lora_deltas[i] = task_arithmetic(task_tensors, valid_weights) |
|
elif combination_type == "ties": |
|
lora_deltas[i] = ties(task_tensors, valid_weights, density, majority_sign_method) |
|
elif combination_type == "dare_linear": |
|
lora_deltas[i] = dare_linear(task_tensors, valid_weights, density) |
|
elif combination_type == "dare_ties": |
|
lora_deltas[i] = dare_ties(task_tensors, valid_weights, density, majority_sign_method) |
|
elif combination_type == "magnitude_prune": |
|
lora_deltas[i] = magnitude_prune(task_tensors, valid_weights, density) |
|
else: |
|
raise ValueError("Invalid combination type") |
|
lora_deltas = [delta.to(dtype) for delta in lora_deltas] |
|
return lora_deltas |
|
|
|
def delete_adapter(self, adapter_name: str) -> None: |
|
""" |
|
Deletes an existing adapter. |
|
|
|
Args: |
|
adapter_name (str): Name of the adapter to be deleted. |
|
""" |
|
if adapter_name not in list(self.peft_config.keys()): |
|
raise ValueError(f"Adapter {adapter_name} does not exist") |
|
del self.peft_config[adapter_name] |
|
|
|
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] |
|
new_adapter = None |
|
for key in key_list: |
|
_, target, _ = _get_submodules(self.model, key) |
|
if isinstance(target, LoraLayer): |
|
target.delete_adapter(adapter_name) |
|
if new_adapter is None: |
|
new_adapter = target.active_adapters[:] |
|
|
|
self.active_adapter = new_adapter or [] |
|
|
|
def merge_and_unload( |
|
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None |
|
) -> torch.nn.Module: |
|
r""" |
|
This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model |
|
as a standalone model. |
|
|
|
Args: |
|
progressbar (`bool`): |
|
whether to show a progressbar indicating the unload and merge process |
|
safe_merge (`bool`): |
|
whether to activate the safe merging check to check if there is any potential Nan in the adapter |
|
weights |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForCausalLM |
|
>>> from peft import PeftModel |
|
|
|
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") |
|
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" |
|
>>> model = PeftModel.from_pretrained(base_model, peft_model_id) |
|
>>> merged_model = model.merge_and_unload() |
|
``` |
|
""" |
|
return self._unload_and_optionally_merge( |
|
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names |
|
) |
|
|
|
def unload(self) -> torch.nn.Module: |
|
""" |
|
Gets back the base model by removing all the lora modules without merging. This gives back the original base |
|
model. |
|
""" |
|
return self._unload_and_optionally_merge(merge=False) |
|
|
|
def subtract_mutated_init(self, output_state_dict: dict[str, torch.Tensor], adapter_name: str, kwargs=None): |
|
""" |
|
This function can calculate the updates of the [PiSSA | OLoRA] by comparing the parameters of the [PiSSA | |
|
OLoRA] adapter in `output_state_dict` with the initial values of [PiSSA | OLoRA] in `adapter_name`, thus |
|
converting [PiSSA | OLoRA] to LoRA. |
|
""" |
|
for name, param in self.model.named_parameters(): |
|
if ( |
|
param.data.dtype != torch.float32 |
|
and param.data.dtype != torch.float16 |
|
and param.data.dtype != torch.bfloat16 |
|
) and adapter_name.startswith("pissa"): |
|
warnings.warn( |
|
r"Note that Quant(W_res) + AB != Quant(W) + \Delta(AB); " |
|
"the converted LoRA, when combined with W or Quant(W), may introduce a certain gap in the fine-tuned model. " |
|
"Therefore, we recommend directly using the Quant(W_res) in conjunction with the PiSSA adapter. " |
|
) |
|
mutated_init_state_dict = get_peft_model_state_dict( |
|
self, |
|
state_dict=kwargs.get("state_dict", None), |
|
adapter_name=adapter_name, |
|
) |
|
tensors_lora = {} |
|
for name in output_state_dict.keys(): |
|
|
|
|
|
|
|
if "lora_A" in name: |
|
tensors_lora[name] = torch.cat( |
|
[output_state_dict[name], mutated_init_state_dict[".".join(name.split(".")[1:])]], dim=0 |
|
) |
|
elif "lora_B" in name: |
|
tensors_lora[name] = torch.cat( |
|
[output_state_dict[name], -mutated_init_state_dict[".".join(name.split(".")[1:])]], dim=1 |
|
) |
|
|
|
return tensors_lora |
|
|