|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import contextmanager |
|
from dataclasses import asdict |
|
from enum import Enum |
|
from typing import Any |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists |
|
from peft.utils import ( |
|
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, |
|
ModulesToSaveWrapper, |
|
) |
|
|
|
from .config import PolyConfig |
|
from .layer import Linear, PolyLayer |
|
|
|
|
|
class PolyModel(BaseTuner): |
|
prefix: str = "poly_" |
|
|
|
def __init__(self, model, config, adapter_name) -> None: |
|
super().__init__(model, config, adapter_name) |
|
|
|
@staticmethod |
|
def _check_target_module_exists(poly_config, key): |
|
return check_target_module_exists(poly_config, key) |
|
|
|
def _create_and_replace( |
|
self, |
|
poly_config: PolyConfig, |
|
adapter_name: str, |
|
target: nn.Module, |
|
target_name: str, |
|
parent: nn.Module, |
|
**optional_kwargs: Any, |
|
): |
|
if isinstance(target, PolyLayer): |
|
target.update_layer(adapter_name, poly_config) |
|
else: |
|
new_module = self._create_new_module( |
|
poly_config, |
|
adapter_name, |
|
target, |
|
) |
|
if adapter_name not in self.active_adapters: |
|
|
|
new_module.requires_grad_(False) |
|
self._replace_module(parent, target_name, new_module, target) |
|
|
|
def _replace_module(self, parent, child_name, new_module, child): |
|
setattr(parent, child_name, new_module) |
|
|
|
|
|
|
|
|
|
if hasattr(child, "base_layer"): |
|
child = child.base_layer |
|
|
|
if not hasattr(new_module, "base_layer"): |
|
new_module.weight = child.weight |
|
if hasattr(child, "bias"): |
|
new_module.bias = child.bias |
|
|
|
if getattr(child, "state", None) is not None: |
|
if hasattr(new_module, "base_layer"): |
|
new_module.base_layer.state = child.state |
|
else: |
|
new_module.state = child.state |
|
new_module.to(child.weight.device) |
|
|
|
|
|
for name, module in new_module.named_modules(): |
|
if (self.prefix in name) or ("ranknum" in name): |
|
weight = child.qweight if hasattr(child, "qweight") else child.weight |
|
module.to(weight.device) |
|
|
|
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: |
|
for n, p in model.named_parameters(): |
|
if self.prefix not in n: |
|
p.requires_grad = False |
|
|
|
@staticmethod |
|
def _create_new_module(poly_config, adapter_name, target, **kwargs): |
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
if isinstance(target_base_layer, torch.nn.Linear): |
|
return Linear(target, adapter_name, poly_config, **kwargs) |
|
else: |
|
raise ValueError( |
|
f"Target module {target} is not supported. Currently, only the following modules are supported: " |
|
"`torch.nn.Linear`." |
|
) |
|
|
|
def __getattr__(self, name: str): |
|
"""Forward missing attributes to the wrapped module.""" |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
if name == "model": |
|
raise |
|
return getattr(self.model, name) |
|
|
|
def get_peft_config_as_dict(self, inference: bool = False): |
|
config_dict = {} |
|
for key, value in self.peft_config.items(): |
|
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} |
|
if inference: |
|
config["inference_mode"] = True |
|
config_dict[key] = config |
|
return config |
|
|
|
def _set_adapter_layers(self, enabled=True): |
|
for module in self.model.modules(): |
|
if isinstance(module, (PolyLayer, ModulesToSaveWrapper)): |
|
module.enable_adapters(enabled) |
|
|
|
def enable_adapter_layers(self): |
|
self._set_adapter_layers(enabled=True) |
|
|
|
def disable_adapter_layers(self): |
|
self._set_adapter_layers(enabled=False) |
|
|
|
def set_adapter(self, adapter_name): |
|
for module in self.model.modules(): |
|
if isinstance(module, PolyLayer): |
|
module.set_adapter(adapter_name) |
|
|
|
def _prepare_adapter_config(self, peft_config, model_config): |
|
if peft_config.target_modules is None: |
|
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: |
|
raise ValueError("Please specify `target_modules` in `peft_config`") |
|
peft_config.target_modules = set( |
|
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]] |
|
) |
|
return peft_config |
|
|
|
def _register_pre_hooks(self, task_ids): |
|
"""Helper method to register pre hooks.""" |
|
if task_ids is None: |
|
return [] |
|
|
|
def pre_hook(_, args, kwargs): |
|
kwargs["task_ids"] = task_ids |
|
return args, kwargs |
|
|
|
handles = [] |
|
|
|
for module in self.model.modules(): |
|
if isinstance(module, Linear): |
|
handle = module.register_forward_pre_hook(pre_hook, with_kwargs=True) |
|
handles.append(handle) |
|
|
|
return handles |
|
|
|
@contextmanager |
|
def _manage_pre_hooks(self, task_ids): |
|
"""Context manager to handle the lifecycle of pre hooks.""" |
|
handles = self._register_pre_hooks(task_ids) |
|
try: |
|
yield |
|
finally: |
|
for handle in handles: |
|
handle.remove() |
|
|
|
def forward(self, *args, task_ids=None, **kwargs): |
|
with self._manage_pre_hooks(task_ids): |
|
return self.model(*args, **kwargs) |
|
|
|
def generate(self, *args, task_ids=None, **kwargs): |
|
with self._manage_pre_hooks(task_ids): |
|
return self.model.generate(*args, **kwargs) |
|
|