|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import builtins |
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .config import XLoraConfig |
|
|
|
|
|
Number = Union[builtins.int, builtins.float, builtins.bool] |
|
|
|
|
|
class TemperatureScaledSoftmax(nn.Module): |
|
def __init__(self, temperature=1.0): |
|
super().__init__() |
|
self.temperature = temperature |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, logits): |
|
|
|
scaled_logits = logits / self.temperature |
|
|
|
return self.softmax(scaled_logits) |
|
|
|
|
|
class XLoraClassifier(nn.Module): |
|
""" |
|
A classifier to select LoRA layers for XLora. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
config: XLoraConfig, |
|
n_classes: int, |
|
n_layers: int, |
|
device: torch.device, |
|
): |
|
""" |
|
Construct an X-LoRA classifier from a model, config and some metadata. Note that n_layers is the number of LoRA |
|
adapter layers, not the number of model layers. |
|
""" |
|
super().__init__() |
|
|
|
self.n_classes = n_classes |
|
self.n_layers = n_layers |
|
self.config = config |
|
self.log_scalings = [] |
|
self.softmax = TemperatureScaledSoftmax(temperature=self.config.softmax_temperature) |
|
self.override_scaling_pass_value: Number = config.scaling_pass_value |
|
|
|
self.scalings_logging = False |
|
|
|
self.dtype = next(model.parameters()).dtype |
|
add_dropout = config.xlora_dropout_p > 0.0 |
|
|
|
layers = [] |
|
if self.config.xlora_depth == 1: |
|
if config.layerwise_scalings: |
|
last = nn.Linear(config.hidden_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) |
|
else: |
|
last = nn.Linear(config.hidden_size, n_classes, bias=True).to(device).to(self.dtype) |
|
else: |
|
if self.config.xlora_depth <= 0: |
|
raise ValueError("X-LoRA depth must be strictly positive.") |
|
|
|
layers.append(nn.Linear(config.hidden_size, config.xlora_size, bias=True).to(device).to(self.dtype)) |
|
|
|
layers.append(nn.ReLU()) |
|
if add_dropout: |
|
layers.append(nn.Dropout(p=config.xlora_dropout_p)) |
|
|
|
for _ in range(config.xlora_depth - 2): |
|
layers.append(nn.Linear(config.xlora_size, config.xlora_size, bias=True).to(device).to(self.dtype)) |
|
|
|
layers.append(nn.ReLU()) |
|
if add_dropout: |
|
layers.append(nn.Dropout(p=config.xlora_dropout_p)) |
|
|
|
if config.layerwise_scalings: |
|
last = nn.Linear(config.xlora_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) |
|
else: |
|
last = nn.Linear(config.xlora_size, n_classes, bias=True).to(device).to(self.dtype) |
|
self.layers = nn.Sequential(*layers, last) |
|
|
|
def make_dummy_scalings( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Make some dummy scalings for the scalings pass (the one to get the logits for the X-LoRA classifier). These are |
|
of shape (batch_size, seq_len, n_layers, n_classes) and filled with the override scalings pass value. Note that |
|
n_layers is the number of LoRA adapter layers, not the number of model layers. |
|
""" |
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
device = input_ids.device |
|
seq_len = input_ids.shape[1] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
device = inputs_embeds.device |
|
seq_len = inputs_embeds.shape[1] |
|
|
|
return torch.full( |
|
(batch_size, seq_len, self.n_layers, self.n_classes), |
|
self.override_scaling_pass_value, |
|
).to(device=device, dtype=self.dtype) |
|
|
|
def forward( |
|
self, |
|
result, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Using the hidden states of the model, predict `n_classes` LoRA alpha values. Returns the scalings. |
|
""" |
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
seq_len = input_ids.shape[1] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
seq_len = inputs_embeds.shape[1] |
|
|
|
hidden_states = result.hidden_states |
|
|
|
hidden_state = hidden_states[-1] |
|
|
|
|
|
|
|
logits = self.layers.forward(hidden_state) |
|
|
|
|
|
|
|
|
|
if not self.config.layerwise_scalings: |
|
logits = logits.unsqueeze(2) |
|
logits = logits.expand(-1, -1, self.n_layers, -1) |
|
|
|
|
|
|
|
scalings = logits.reshape(batch_size, seq_len, self.n_layers, self.n_classes) |
|
|
|
|
|
if self.config.enable_softmax: |
|
scalings = self.softmax(scalings) |
|
|
|
if self.scalings_logging: |
|
self.log_scalings.append(scalings) |
|
|
|
return scalings |
|
|
|
def _get_bucketed_scalings(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]: |
|
""" |
|
Returns bucketed scalings, bucketed by seq_len. Each value consists of the positions (the first) and the |
|
associated tensors. The positions are paired with the associated tensors and give the position in the scaling |
|
log. Each scaling is a tensor of shape (batch_size, seq_len, n_layers, n_classes)). |
|
""" |
|
seqlens_map: dict[int, tuple[list[int], list[torch.Tensor]]] = {} |
|
for i, scaling in enumerate(self.log_scalings): |
|
seq_len = scaling.shape[1] |
|
if seq_len not in seqlens_map: |
|
seqlens_map[seq_len] = ([i], [scaling]) |
|
else: |
|
seqlens_map[seq_len][0].append(i) |
|
seqlens_map[seq_len][1].append(scaling) |
|
|
|
return seqlens_map |
|
|
|
def _set_override_scaling_pass_value(self, value: Union[Number, None]): |
|
if value is None: |
|
self.override_scaling_pass_value = 1 / self.n_classes |
|
else: |
|
self.override_scaling_pass_value = value |
|
self.config.scaling_pass_value = self.override_scaling_pass_value |
|
|