diff --git "a/icedit/diffusers/models/attention_processor.py" "b/icedit/diffusers/models/attention_processor.py" new file mode 100644--- /dev/null +++ "b/icedit/diffusers/models/attention_processor.py" @@ -0,0 +1,6097 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import inspect +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from ..image_processor import IPAdapterMaskProcessor +from ..utils import deprecate, is_torch_xla_available, logging +from ..utils.import_utils import is_torch_npu_available, is_torch_xla_version, is_xformers_available +from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +if is_torch_npu_available(): + import torch_npu + +if is_xformers_available(): + import xformers + import xformers.ops +else: + xformers = None + +if is_torch_xla_available(): + # flash attention pallas kernel is introduced in the torch_xla 2.3 release. + if is_torch_xla_version(">", "2.2"): + from torch_xla.experimental.custom_kernel import flash_attention + from torch_xla.runtime import is_spmd + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +@maybe_allow_in_graph +class Attention(nn.Module): + r""" + A cross attention layer. + + Parameters: + query_dim (`int`): + The number of channels in the query. + cross_attention_dim (`int`, *optional*): + The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. + heads (`int`, *optional*, defaults to 8): + The number of heads to use for multi-head attention. + kv_heads (`int`, *optional*, defaults to `None`): + The number of key and value heads to use for multi-head attention. Defaults to `heads`. If + `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi + Query Attention (MQA) otherwise GQA is used. + dim_head (`int`, *optional*, defaults to 64): + The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + bias (`bool`, *optional*, defaults to False): + Set to `True` for the query, key, and value linear layers to contain a bias parameter. + upcast_attention (`bool`, *optional*, defaults to False): + Set to `True` to upcast the attention computation to `float32`. + upcast_softmax (`bool`, *optional*, defaults to False): + Set to `True` to upcast the softmax computation to `float32`. + cross_attention_norm (`str`, *optional*, defaults to `None`): + The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. + cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the group norm in the cross attention. + added_kv_proj_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the added key and value projections. If `None`, no projection is used. + norm_num_groups (`int`, *optional*, defaults to `None`): + The number of groups to use for the group norm in the attention. + spatial_norm_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the spatial normalization. + out_bias (`bool`, *optional*, defaults to `True`): + Set to `True` to use a bias in the output linear layer. + scale_qk (`bool`, *optional*, defaults to `True`): + Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. + only_cross_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if + `added_kv_proj_dim` is not `None`. + eps (`float`, *optional*, defaults to 1e-5): + An additional value added to the denominator in group normalization that is used for numerical stability. + rescale_output_factor (`float`, *optional*, defaults to 1.0): + A factor to rescale the output by dividing it with this value. + residual_connection (`bool`, *optional*, defaults to `False`): + Set to `True` to add the residual connection to the output. + _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): + Set to `True` if the attention block is loaded from a deprecated state dict. + processor (`AttnProcessor`, *optional*, defaults to `None`): + The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and + `AttnProcessor` otherwise. + """ + + def __init__( + self, + query_dim: int, + cross_attention_dim: Optional[int] = None, + heads: int = 8, + kv_heads: Optional[int] = None, + dim_head: int = 64, + dropout: float = 0.0, + bias: bool = False, + upcast_attention: bool = False, + upcast_softmax: bool = False, + cross_attention_norm: Optional[str] = None, + cross_attention_norm_num_groups: int = 32, + qk_norm: Optional[str] = None, + added_kv_proj_dim: Optional[int] = None, + added_proj_bias: Optional[bool] = True, + norm_num_groups: Optional[int] = None, + spatial_norm_dim: Optional[int] = None, + out_bias: bool = True, + scale_qk: bool = True, + only_cross_attention: bool = False, + eps: float = 1e-5, + rescale_output_factor: float = 1.0, + residual_connection: bool = False, + _from_deprecated_attn_block: bool = False, + processor: Optional["AttnProcessor"] = None, + out_dim: int = None, + out_context_dim: int = None, + context_pre_only=None, + pre_only=False, + elementwise_affine: bool = True, + is_causal: bool = False, + ): + super().__init__() + + # To prevent circular import. + from .normalization import FP32LayerNorm, LpNorm, RMSNorm + + self.inner_dim = out_dim if out_dim is not None else dim_head * heads + self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads + self.query_dim = query_dim + self.use_bias = bias + self.is_cross_attention = cross_attention_dim is not None + self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim + self.upcast_attention = upcast_attention + self.upcast_softmax = upcast_softmax + self.rescale_output_factor = rescale_output_factor + self.residual_connection = residual_connection + self.dropout = dropout + self.fused_projections = False + self.out_dim = out_dim if out_dim is not None else query_dim + self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim + self.context_pre_only = context_pre_only + self.pre_only = pre_only + self.is_causal = is_causal + + # we make use of this private variable to know whether this class is loaded + # with an deprecated state dict so that we can convert it on the fly + self._from_deprecated_attn_block = _from_deprecated_attn_block + + self.scale_qk = scale_qk + self.scale = dim_head**-0.5 if self.scale_qk else 1.0 + + self.heads = out_dim // dim_head if out_dim is not None else heads + # for slice_size > 0 the attention score computation + # is split across the batch axis to save memory + # You can set slice_size with `set_attention_slice` + self.sliceable_head_dim = heads + + self.added_kv_proj_dim = added_kv_proj_dim + self.only_cross_attention = only_cross_attention + + if self.added_kv_proj_dim is None and self.only_cross_attention: + raise ValueError( + "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." + ) + + if norm_num_groups is not None: + self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) + else: + self.group_norm = None + + if spatial_norm_dim is not None: + self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) + else: + self.spatial_norm = None + + if qk_norm is None: + self.norm_q = None + self.norm_k = None + elif qk_norm == "layer_norm": + self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) + self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) + elif qk_norm == "fp32_layer_norm": + self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + elif qk_norm == "layer_norm_across_heads": + # Lumina applies qk norm across all heads + self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps) + self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps) + elif qk_norm == "rms_norm": + self.norm_q = RMSNorm(dim_head, eps=eps) + self.norm_k = RMSNorm(dim_head, eps=eps) + elif qk_norm == "rms_norm_across_heads": + # LTX applies qk norm across all heads + self.norm_q = RMSNorm(dim_head * heads, eps=eps) + self.norm_k = RMSNorm(dim_head * kv_heads, eps=eps) + elif qk_norm == "l2": + self.norm_q = LpNorm(p=2, dim=-1, eps=eps) + self.norm_k = LpNorm(p=2, dim=-1, eps=eps) + else: + raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None,'layer_norm','fp32_layer_norm','rms_norm'") + + if cross_attention_norm is None: + self.norm_cross = None + elif cross_attention_norm == "layer_norm": + self.norm_cross = nn.LayerNorm(self.cross_attention_dim) + elif cross_attention_norm == "group_norm": + if self.added_kv_proj_dim is not None: + # The given `encoder_hidden_states` are initially of shape + # (batch_size, seq_len, added_kv_proj_dim) before being projected + # to (batch_size, seq_len, cross_attention_dim). The norm is applied + # before the projection, so we need to use `added_kv_proj_dim` as + # the number of channels for the group norm. + norm_cross_num_channels = added_kv_proj_dim + else: + norm_cross_num_channels = self.cross_attention_dim + + self.norm_cross = nn.GroupNorm( + num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True + ) + else: + raise ValueError( + f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" + ) + + self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) + + if not self.only_cross_attention: + # only relevant for the `AddedKVProcessor` classes + self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) + self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) + else: + self.to_k = None + self.to_v = None + + self.added_proj_bias = added_proj_bias + if self.added_kv_proj_dim is not None: + self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) + self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) + if self.context_pre_only is not None: + self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) + else: + self.add_q_proj = None + self.add_k_proj = None + self.add_v_proj = None + + if not self.pre_only: + self.to_out = nn.ModuleList([]) + self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) + self.to_out.append(nn.Dropout(dropout)) + else: + self.to_out = None + + if self.context_pre_only is not None and not self.context_pre_only: + self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) + else: + self.to_add_out = None + + if qk_norm is not None and added_kv_proj_dim is not None: + if qk_norm == "fp32_layer_norm": + self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + elif qk_norm == "rms_norm": + self.norm_added_q = RMSNorm(dim_head, eps=eps) + self.norm_added_k = RMSNorm(dim_head, eps=eps) + else: + raise ValueError( + f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`" + ) + else: + self.norm_added_q = None + self.norm_added_k = None + + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + if processor is None: + processor = ( + AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() + ) + self.set_processor(processor) + + def set_use_xla_flash_attention( + self, use_xla_flash_attention: bool, partition_spec: Optional[Tuple[Optional[str], ...]] = None + ) -> None: + r""" + Set whether to use xla flash attention from `torch_xla` or not. + + Args: + use_xla_flash_attention (`bool`): + Whether to use pallas flash attention kernel from `torch_xla` or not. + partition_spec (`Tuple[]`, *optional*): + Specify the partition specification if using SPMD. Otherwise None. + """ + if use_xla_flash_attention: + if not is_torch_xla_available: + raise "torch_xla is not available" + elif is_torch_xla_version("<", "2.3"): + raise "flash attention pallas kernel is supported from torch_xla version 2.3" + elif is_spmd() and is_torch_xla_version("<", "2.4"): + raise "flash attention pallas kernel using SPMD is supported from torch_xla version 2.4" + else: + processor = XLAFlashAttnProcessor2_0(partition_spec) + else: + processor = ( + AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() + ) + self.set_processor(processor) + + def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None: + r""" + Set whether to use npu flash attention from `torch_npu` or not. + + """ + if use_npu_flash_attention: + processor = AttnProcessorNPU() + else: + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + processor = ( + AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() + ) + self.set_processor(processor) + + def set_use_memory_efficient_attention_xformers( + self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None + ) -> None: + r""" + Set whether to use memory efficient attention from `xformers` or not. + + Args: + use_memory_efficient_attention_xformers (`bool`): + Whether to use memory efficient attention from `xformers` or not. + attention_op (`Callable`, *optional*): + The attention operation to use. Defaults to `None` which uses the default attention operation from + `xformers`. + """ + is_custom_diffusion = hasattr(self, "processor") and isinstance( + self.processor, + (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), + ) + is_added_kv_processor = hasattr(self, "processor") and isinstance( + self.processor, + ( + AttnAddedKVProcessor, + AttnAddedKVProcessor2_0, + SlicedAttnAddedKVProcessor, + XFormersAttnAddedKVProcessor, + ), + ) + is_ip_adapter = hasattr(self, "processor") and isinstance( + self.processor, + (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor), + ) + is_joint_processor = hasattr(self, "processor") and isinstance( + self.processor, + ( + JointAttnProcessor2_0, + XFormersJointAttnProcessor, + ), + ) + + if use_memory_efficient_attention_xformers: + if is_added_kv_processor and is_custom_diffusion: + raise NotImplementedError( + f"Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}" + ) + if not is_xformers_available(): + raise ModuleNotFoundError( + ( + "Refer to https://github.com/facebookresearch/xformers for more information on how to install" + " xformers" + ), + name="xformers", + ) + elif not torch.cuda.is_available(): + raise ValueError( + "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" + " only available for GPU " + ) + else: + try: + # Make sure we can run the memory efficient attention + _ = xformers.ops.memory_efficient_attention( + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + ) + except Exception as e: + raise e + + if is_custom_diffusion: + processor = CustomDiffusionXFormersAttnProcessor( + train_kv=self.processor.train_kv, + train_q_out=self.processor.train_q_out, + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + attention_op=attention_op, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_custom_diffusion"): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + elif is_added_kv_processor: + # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP + # which uses this type of cross attention ONLY because the attention mask of format + # [0, ..., -10.000, ..., 0, ...,] is not supported + # throw warning + logger.info( + "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." + ) + processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) + elif is_ip_adapter: + processor = IPAdapterXFormersAttnProcessor( + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + num_tokens=self.processor.num_tokens, + scale=self.processor.scale, + attention_op=attention_op, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_ip"): + processor.to( + device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype + ) + elif is_joint_processor: + processor = XFormersJointAttnProcessor(attention_op=attention_op) + else: + processor = XFormersAttnProcessor(attention_op=attention_op) + else: + if is_custom_diffusion: + attn_processor_class = ( + CustomDiffusionAttnProcessor2_0 + if hasattr(F, "scaled_dot_product_attention") + else CustomDiffusionAttnProcessor + ) + processor = attn_processor_class( + train_kv=self.processor.train_kv, + train_q_out=self.processor.train_q_out, + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_custom_diffusion"): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + elif is_ip_adapter: + processor = IPAdapterAttnProcessor2_0( + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + num_tokens=self.processor.num_tokens, + scale=self.processor.scale, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_ip"): + processor.to( + device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype + ) + else: + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + processor = ( + AttnProcessor2_0() + if hasattr(F, "scaled_dot_product_attention") and self.scale_qk + else AttnProcessor() + ) + + self.set_processor(processor) + + def set_attention_slice(self, slice_size: int) -> None: + r""" + Set the slice size for attention computation. + + Args: + slice_size (`int`): + The slice size for attention computation. + """ + if slice_size is not None and slice_size > self.sliceable_head_dim: + raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") + + if slice_size is not None and self.added_kv_proj_dim is not None: + processor = SlicedAttnAddedKVProcessor(slice_size) + elif slice_size is not None: + processor = SlicedAttnProcessor(slice_size) + elif self.added_kv_proj_dim is not None: + processor = AttnAddedKVProcessor() + else: + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + processor = ( + AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() + ) + + self.set_processor(processor) + + def set_processor(self, processor: "AttnProcessor") -> None: + r""" + Set the attention processor to use. + + Args: + processor (`AttnProcessor`): + The attention processor to use. + """ + # if current processor is in `self._modules` and if passed `processor` is not, we need to + # pop `processor` from `self._modules` + if ( + hasattr(self, "processor") + and isinstance(self.processor, torch.nn.Module) + and not isinstance(processor, torch.nn.Module) + ): + logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") + self._modules.pop("processor") + + self.processor = processor + + def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": + r""" + Get the attention processor in use. + + Args: + return_deprecated_lora (`bool`, *optional*, defaults to `False`): + Set to `True` to return the deprecated LoRA attention processor. + + Returns: + "AttentionProcessor": The attention processor in use. + """ + if not return_deprecated_lora: + return self.processor + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + **cross_attention_kwargs, + ) -> torch.Tensor: + r""" + The forward method of the `Attention` class. + + Args: + hidden_states (`torch.Tensor`): + The hidden states of the query. + encoder_hidden_states (`torch.Tensor`, *optional*): + The hidden states of the encoder. + attention_mask (`torch.Tensor`, *optional*): + The attention mask to use. If `None`, no mask is applied. + **cross_attention_kwargs: + Additional keyword arguments to pass along to the cross attention. + + Returns: + `torch.Tensor`: The output of the attention layer. + """ + # The `Attention` class can call different attention processors / attention functions + # here we simply pass along all tensors to the selected processor class + # For standard processors that are defined here, `**cross_attention_kwargs` is empty + + attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) + quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"} + unused_kwargs = [ + k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters + ] + if len(unused_kwargs) > 0: + logger.warning( + f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." + ) + cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} + + return self.processor( + self, + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + + def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` + is the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + head_size = self.heads + batch_size, seq_len, dim = tensor.shape + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is + the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is + reshaped to `[batch_size * heads, seq_len, dim // heads]`. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + head_size = self.heads + if tensor.ndim == 3: + batch_size, seq_len, dim = tensor.shape + extra_dim = 1 + else: + batch_size, extra_dim, seq_len, dim = tensor.shape + tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size) + tensor = tensor.permute(0, 2, 1, 3) + + if out_dim == 3: + tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size) + + return tensor + + def get_attention_scores( + self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None + ) -> torch.Tensor: + r""" + Compute the attention scores. + + Args: + query (`torch.Tensor`): The query tensor. + key (`torch.Tensor`): The key tensor. + attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. + + Returns: + `torch.Tensor`: The attention probabilities/scores. + """ + dtype = query.dtype + if self.upcast_attention: + query = query.float() + key = key.float() + + if attention_mask is None: + baddbmm_input = torch.empty( + query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device + ) + beta = 0 + else: + baddbmm_input = attention_mask + beta = 1 + + attention_scores = torch.baddbmm( + baddbmm_input, + query, + key.transpose(-1, -2), + beta=beta, + alpha=self.scale, + ) + del baddbmm_input + + if self.upcast_softmax: + attention_scores = attention_scores.float() + + attention_probs = attention_scores.softmax(dim=-1) + del attention_scores + + attention_probs = attention_probs.to(dtype) + + return attention_probs + + def prepare_attention_mask( + self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 + ) -> torch.Tensor: + r""" + Prepare the attention mask for the attention computation. + + Args: + attention_mask (`torch.Tensor`): + The attention mask to prepare. + target_length (`int`): + The target length of the attention mask. This is the length of the attention mask after padding. + batch_size (`int`): + The batch size, which is used to repeat the attention mask. + out_dim (`int`, *optional*, defaults to `3`): + The output dimension of the attention mask. Can be either `3` or `4`. + + Returns: + `torch.Tensor`: The prepared attention mask. + """ + head_size = self.heads + if attention_mask is None: + return attention_mask + + current_length: int = attention_mask.shape[-1] + if current_length != target_length: + if attention_mask.device.type == "mps": + # HACK: MPS: Does not support padding by greater than dimension of input tensor. + # Instead, we can manually construct the padding tensor. + padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) + padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) + attention_mask = torch.cat([attention_mask, padding], dim=2) + else: + # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: + # we want to instead pad by (0, remaining_length), where remaining_length is: + # remaining_length: int = target_length - current_length + # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + + if out_dim == 3: + if attention_mask.shape[0] < batch_size * head_size: + attention_mask = attention_mask.repeat_interleave(head_size, dim=0) + elif out_dim == 4: + attention_mask = attention_mask.unsqueeze(1) + attention_mask = attention_mask.repeat_interleave(head_size, dim=1) + + return attention_mask + + def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + r""" + Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the + `Attention` class. + + Args: + encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. + + Returns: + `torch.Tensor`: The normalized encoder hidden states. + """ + assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" + + if isinstance(self.norm_cross, nn.LayerNorm): + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + elif isinstance(self.norm_cross, nn.GroupNorm): + # Group norm norms along the channels dimension and expects + # input to be in the shape of (N, C, *). In this case, we want + # to norm along the hidden dimension, so we need to move + # (batch_size, sequence_length, hidden_size) -> + # (batch_size, hidden_size, sequence_length) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + else: + assert False + + return encoder_hidden_states + + @torch.no_grad() + def fuse_projections(self, fuse=True): + device = self.to_q.weight.data.device + dtype = self.to_q.weight.data.dtype + + if not self.is_cross_attention: + # fetch weight matrices. + concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + + # create a new single projection layer and copy over the weights. + self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) + self.to_qkv.weight.copy_(concatenated_weights) + if self.use_bias: + concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data]) + self.to_qkv.bias.copy_(concatenated_bias) + + else: + concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data]) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + + self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) + self.to_kv.weight.copy_(concatenated_weights) + if self.use_bias: + concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data]) + self.to_kv.bias.copy_(concatenated_bias) + + # handle added projections for SD3 and others. + if ( + getattr(self, "add_q_proj", None) is not None + and getattr(self, "add_k_proj", None) is not None + and getattr(self, "add_v_proj", None) is not None + ): + concatenated_weights = torch.cat( + [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data] + ) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + + self.to_added_qkv = nn.Linear( + in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype + ) + self.to_added_qkv.weight.copy_(concatenated_weights) + if self.added_proj_bias: + concatenated_bias = torch.cat( + [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data] + ) + self.to_added_qkv.bias.copy_(concatenated_bias) + + self.fused_projections = fuse + + +class SanaMultiscaleAttentionProjection(nn.Module): + def __init__( + self, + in_channels: int, + num_attention_heads: int, + kernel_size: int, + ) -> None: + super().__init__() + + channels = 3 * in_channels + self.proj_in = nn.Conv2d( + channels, + channels, + kernel_size, + padding=kernel_size // 2, + groups=channels, + bias=False, + ) + self.proj_out = nn.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.proj_in(hidden_states) + hidden_states = self.proj_out(hidden_states) + return hidden_states + + +class SanaMultiscaleLinearAttention(nn.Module): + r"""Lightweight multi-scale linear attention""" + + def __init__( + self, + in_channels: int, + out_channels: int, + num_attention_heads: Optional[int] = None, + attention_head_dim: int = 8, + mult: float = 1.0, + norm_type: str = "batch_norm", + kernel_sizes: Tuple[int, ...] = (5,), + eps: float = 1e-15, + residual_connection: bool = False, + ): + super().__init__() + + # To prevent circular import + from .normalization import get_normalization + + self.eps = eps + self.attention_head_dim = attention_head_dim + self.norm_type = norm_type + self.residual_connection = residual_connection + + num_attention_heads = ( + int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads + ) + inner_dim = num_attention_heads * attention_head_dim + + self.to_q = nn.Linear(in_channels, inner_dim, bias=False) + self.to_k = nn.Linear(in_channels, inner_dim, bias=False) + self.to_v = nn.Linear(in_channels, inner_dim, bias=False) + + self.to_qkv_multiscale = nn.ModuleList() + for kernel_size in kernel_sizes: + self.to_qkv_multiscale.append( + SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size) + ) + + self.nonlinearity = nn.ReLU() + self.to_out = nn.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False) + self.norm_out = get_normalization(norm_type, num_features=out_channels) + + self.processor = SanaMultiscaleAttnProcessor2_0() + + def apply_linear_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: + value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1) # Adds padding + scores = torch.matmul(value, key.transpose(-1, -2)) + hidden_states = torch.matmul(scores, query) + + hidden_states = hidden_states.to(dtype=torch.float32) + hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) + return hidden_states + + def apply_quadratic_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: + scores = torch.matmul(key.transpose(-1, -2), query) + scores = scores.to(dtype=torch.float32) + scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps) + hidden_states = torch.matmul(value, scores) + return hidden_states + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return self.processor(self, hidden_states) + + +class MochiAttention(nn.Module): + def __init__( + self, + query_dim: int, + added_kv_proj_dim: int, + processor: "MochiAttnProcessor2_0", + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + bias: bool = False, + added_proj_bias: bool = True, + out_dim: Optional[int] = None, + out_context_dim: Optional[int] = None, + out_bias: bool = True, + context_pre_only: bool = False, + eps: float = 1e-5, + ): + super().__init__() + from .normalization import MochiRMSNorm + + self.inner_dim = out_dim if out_dim is not None else dim_head * heads + self.out_dim = out_dim if out_dim is not None else query_dim + self.out_context_dim = out_context_dim if out_context_dim else query_dim + self.context_pre_only = context_pre_only + + self.heads = out_dim // dim_head if out_dim is not None else heads + + self.norm_q = MochiRMSNorm(dim_head, eps, True) + self.norm_k = MochiRMSNorm(dim_head, eps, True) + self.norm_added_q = MochiRMSNorm(dim_head, eps, True) + self.norm_added_k = MochiRMSNorm(dim_head, eps, True) + + self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) + self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias) + self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias) + + self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) + self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) + if self.context_pre_only is not None: + self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) + + self.to_out = nn.ModuleList([]) + self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) + self.to_out.append(nn.Dropout(dropout)) + + if not self.context_pre_only: + self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) + + self.processor = processor + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + **kwargs, + ): + return self.processor( + self, + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + **kwargs, + ) + + +class MochiAttnProcessor2_0: + """Attention processor used in Mochi.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: "MochiAttention", + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + query = query.unflatten(2, (attn.heads, -1)) + key = key.unflatten(2, (attn.heads, -1)) + value = value.unflatten(2, (attn.heads, -1)) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + encoder_query = attn.add_q_proj(encoder_hidden_states) + encoder_key = attn.add_k_proj(encoder_hidden_states) + encoder_value = attn.add_v_proj(encoder_hidden_states) + + encoder_query = encoder_query.unflatten(2, (attn.heads, -1)) + encoder_key = encoder_key.unflatten(2, (attn.heads, -1)) + encoder_value = encoder_value.unflatten(2, (attn.heads, -1)) + + if attn.norm_added_q is not None: + encoder_query = attn.norm_added_q(encoder_query) + if attn.norm_added_k is not None: + encoder_key = attn.norm_added_k(encoder_key) + + if image_rotary_emb is not None: + + def apply_rotary_emb(x, freqs_cos, freqs_sin): + x_even = x[..., 0::2].float() + x_odd = x[..., 1::2].float() + + cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype) + sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype) + + return torch.stack([cos, sin], dim=-1).flatten(-2) + + query = apply_rotary_emb(query, *image_rotary_emb) + key = apply_rotary_emb(key, *image_rotary_emb) + + query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) + encoder_query, encoder_key, encoder_value = ( + encoder_query.transpose(1, 2), + encoder_key.transpose(1, 2), + encoder_value.transpose(1, 2), + ) + + sequence_length = query.size(2) + encoder_sequence_length = encoder_query.size(2) + total_length = sequence_length + encoder_sequence_length + + batch_size, heads, _, dim = query.shape + attn_outputs = [] + for idx in range(batch_size): + mask = attention_mask[idx][None, :] + valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten() + + valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :] + valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :] + valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :] + + valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2) + valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2) + valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2) + + attn_output = F.scaled_dot_product_attention( + valid_query, valid_key, valid_value, dropout_p=0.0, is_causal=False + ) + valid_sequence_length = attn_output.size(2) + attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length)) + attn_outputs.append(attn_output) + + hidden_states = torch.cat(attn_outputs, dim=0) + hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) + + hidden_states, encoder_hidden_states = hidden_states.split_with_sizes( + (sequence_length, encoder_sequence_length), dim=1 + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if hasattr(attn, "to_add_out"): + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + + +class AttnProcessor: + r""" + Default processor for performing attention-related computations. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class CustomDiffusionAttnProcessor(nn.Module): + r""" + Processor for implementing attention for the Custom Diffusion method. + + Args: + train_kv (`bool`, defaults to `True`): + Whether to newly train the key and value matrices corresponding to the text features. + train_q_out (`bool`, defaults to `True`): + Whether to newly train query matrices corresponding to the latent image features. + hidden_size (`int`, *optional*, defaults to `None`): + The hidden size of the attention layer. + cross_attention_dim (`int`, *optional*, defaults to `None`): + The number of channels in the `encoder_hidden_states`. + out_bias (`bool`, defaults to `True`): + Whether to include the bias parameter in `train_q_out`. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + """ + + def __init__( + self, + train_kv: bool = True, + train_q_out: bool = True, + hidden_size: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + out_bias: bool = True, + dropout: float = 0.0, + ): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + + # `_custom_diffusion` id for easy serialization and loading. + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + batch_size, sequence_length, _ = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) + else: + query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) + + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + if self.train_q_out: + # linear proj + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + # dropout + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + return hidden_states + + +class AttnAddedKVProcessor: + r""" + Processor for performing attention-related computations with extra learnable key and value matrices for the text + encoder. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + batch_size, sequence_length, _ = hidden_states.shape + + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query) + + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + + return hidden_states + + +class AttnAddedKVProcessor2_0: + r""" + Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra + learnable key and value matrices for the text encoder. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + batch_size, sequence_length, _ = hidden_states.shape + + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query, out_dim=4) + + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) + + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key, out_dim=4) + value = attn.head_to_batch_dim(value, out_dim=4) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + + return hidden_states + + +class JointAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + residual = hidden_states + + batch_size = hidden_states.shape[0] + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # `context` projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) + + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + # Split the attention outputs. + hidden_states, encoder_hidden_states = ( + hidden_states[:, : residual.shape[1]], + hidden_states[:, residual.shape[1] :], + ) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if encoder_hidden_states is not None: + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class PAGJointAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + residual = hidden_states + + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + # store the length of image patch sequences to create a mask that prevents interaction between patches + # similar to making the self-attention map an identity matrix + identity_block_size = hidden_states.shape[1] + + # chunk + hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) + encoder_hidden_states_org, encoder_hidden_states_ptb = encoder_hidden_states.chunk(2) + + ################## original path ################## + batch_size = encoder_hidden_states_org.shape[0] + + # `sample` projections. + query_org = attn.to_q(hidden_states_org) + key_org = attn.to_k(hidden_states_org) + value_org = attn.to_v(hidden_states_org) + + # `context` projections. + encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) + encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) + encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) + + # attention + query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) + key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) + value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) + + inner_dim = key_org.shape[-1] + head_dim = inner_dim // attn.heads + query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + hidden_states_org = F.scaled_dot_product_attention( + query_org, key_org, value_org, dropout_p=0.0, is_causal=False + ) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query_org.dtype) + + # Split the attention outputs. + hidden_states_org, encoder_hidden_states_org = ( + hidden_states_org[:, : residual.shape[1]], + hidden_states_org[:, residual.shape[1] :], + ) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + if not attn.context_pre_only: + encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + ################## perturbed path ################## + + batch_size = encoder_hidden_states_ptb.shape[0] + + # `sample` projections. + query_ptb = attn.to_q(hidden_states_ptb) + key_ptb = attn.to_k(hidden_states_ptb) + value_ptb = attn.to_v(hidden_states_ptb) + + # `context` projections. + encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) + + # attention + query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) + key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) + value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) + + inner_dim = key_ptb.shape[-1] + head_dim = inner_dim // attn.heads + query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # create a full mask with all entries set to 0 + seq_len = query_ptb.size(2) + full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) + + # set the attention value between image patches to -inf + full_mask[:identity_block_size, :identity_block_size] = float("-inf") + + # set the diagonal of the attention value between image patches to 0 + full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) + + # expand the mask to match the attention weights shape + full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions + + hidden_states_ptb = F.scaled_dot_product_attention( + query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False + ) + hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) + + # split the attention outputs. + hidden_states_ptb, encoder_hidden_states_ptb = ( + hidden_states_ptb[:, : residual.shape[1]], + hidden_states_ptb[:, residual.shape[1] :], + ) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if not attn.context_pre_only: + encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + ################ concat ############### + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) + + return hidden_states, encoder_hidden_states + + +class PAGCFGJointAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + residual = hidden_states + + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + identity_block_size = hidden_states.shape[ + 1 + ] # patch embeddings width * height (correspond to self-attention map width or height) + + # chunk + hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + + ( + encoder_hidden_states_uncond, + encoder_hidden_states_org, + encoder_hidden_states_ptb, + ) = encoder_hidden_states.chunk(3) + encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org]) + + ################## original path ################## + batch_size = encoder_hidden_states_org.shape[0] + + # `sample` projections. + query_org = attn.to_q(hidden_states_org) + key_org = attn.to_k(hidden_states_org) + value_org = attn.to_v(hidden_states_org) + + # `context` projections. + encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) + encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) + encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) + + # attention + query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) + key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) + value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) + + inner_dim = key_org.shape[-1] + head_dim = inner_dim // attn.heads + query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + hidden_states_org = F.scaled_dot_product_attention( + query_org, key_org, value_org, dropout_p=0.0, is_causal=False + ) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query_org.dtype) + + # Split the attention outputs. + hidden_states_org, encoder_hidden_states_org = ( + hidden_states_org[:, : residual.shape[1]], + hidden_states_org[:, residual.shape[1] :], + ) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + if not attn.context_pre_only: + encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + ################## perturbed path ################## + + batch_size = encoder_hidden_states_ptb.shape[0] + + # `sample` projections. + query_ptb = attn.to_q(hidden_states_ptb) + key_ptb = attn.to_k(hidden_states_ptb) + value_ptb = attn.to_v(hidden_states_ptb) + + # `context` projections. + encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) + + # attention + query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) + key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) + value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) + + inner_dim = key_ptb.shape[-1] + head_dim = inner_dim // attn.heads + query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # create a full mask with all entries set to 0 + seq_len = query_ptb.size(2) + full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) + + # set the attention value between image patches to -inf + full_mask[:identity_block_size, :identity_block_size] = float("-inf") + + # set the diagonal of the attention value between image patches to 0 + full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) + + # expand the mask to match the attention weights shape + full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions + + hidden_states_ptb = F.scaled_dot_product_attention( + query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False + ) + hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) + + # split the attention outputs. + hidden_states_ptb, encoder_hidden_states_ptb = ( + hidden_states_ptb[:, : residual.shape[1]], + hidden_states_ptb[:, residual.shape[1] :], + ) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if not attn.context_pre_only: + encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + ################ concat ############### + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) + + return hidden_states, encoder_hidden_states + + +class FusedJointAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + residual = hidden_states + + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size = encoder_hidden_states.shape[0] + + # `sample` projections. + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + + # `context` projections. + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + ( + encoder_hidden_states_query_proj, + encoder_hidden_states_key_proj, + encoder_hidden_states_value_proj, + ) = torch.split(encoder_qkv, split_size, dim=-1) + + # attention + query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # Split the attention outputs. + hidden_states, encoder_hidden_states = ( + hidden_states[:, : residual.shape[1]], + hidden_states[:, residual.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + return hidden_states, encoder_hidden_states + + +class XFormersJointAttnProcessor: + r""" + Processor for implementing memory efficient attention using xFormers. + + Args: + attention_op (`Callable`, *optional*, defaults to `None`): + The base + [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to + use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best + operator. + """ + + def __init__(self, attention_op: Optional[Callable] = None): + self.attention_op = attention_op + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + residual = hidden_states + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # `context` projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = attn.head_to_batch_dim(encoder_hidden_states_query_proj).contiguous() + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj).contiguous() + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj).contiguous() + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) + + hidden_states = xformers.ops.memory_efficient_attention( + query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale + ) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + + if encoder_hidden_states is not None: + # Split the attention outputs. + hidden_states, encoder_hidden_states = ( + hidden_states[:, : residual.shape[1]], + hidden_states[:, residual.shape[1] :], + ) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if encoder_hidden_states is not None: + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class AllegroAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "AllegroAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # Apply RoPE if needed + if image_rotary_emb is not None and not attn.is_cross_attention: + from .embeddings import apply_rotary_emb_allegro + + query = apply_rotary_emb_allegro(query, image_rotary_emb[0], image_rotary_emb[1]) + key = apply_rotary_emb_allegro(key, image_rotary_emb[0], image_rotary_emb[1]) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class AuraFlowAttnProcessor2_0: + """Attention processor used typically in processing Aura Flow.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): + raise ImportError( + "AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + batch_size = hidden_states.shape[0] + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + # `context` projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + # Reshape. + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim) + key = key.view(batch_size, -1, attn.heads, head_dim) + value = value.view(batch_size, -1, attn.heads, head_dim) + + # Apply QK norm. + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Concatenate the projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) + + query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + # Attention. + hidden_states = F.scaled_dot_product_attention( + query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False + ) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # Split the attention outputs. + if encoder_hidden_states is not None: + hidden_states, encoder_hidden_states = ( + hidden_states[:, encoder_hidden_states.shape[1] :], + hidden_states[:, : encoder_hidden_states.shape[1]], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + if encoder_hidden_states is not None: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + if encoder_hidden_states is not None: + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FusedAuraFlowAttnProcessor2_0: + """Attention processor used typically in processing Aura Flow with fused projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): + raise ImportError( + "FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + batch_size = hidden_states.shape[0] + + # `sample` projections. + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + + # `context` projections. + if encoder_hidden_states is not None: + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + ( + encoder_hidden_states_query_proj, + encoder_hidden_states_key_proj, + encoder_hidden_states_value_proj, + ) = torch.split(encoder_qkv, split_size, dim=-1) + + # Reshape. + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim) + key = key.view(batch_size, -1, attn.heads, head_dim) + value = value.view(batch_size, -1, attn.heads, head_dim) + + # Apply QK norm. + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Concatenate the projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) + + query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + # Attention. + hidden_states = F.scaled_dot_product_attention( + query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False + ) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # Split the attention outputs. + if encoder_hidden_states is not None: + hidden_states, encoder_hidden_states = ( + hidden_states[:, encoder_hidden_states.shape[1] :], + hidden_states[:, : encoder_hidden_states.shape[1]], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + if encoder_hidden_states is not None: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + if encoder_hidden_states is not None: + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FluxAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + if encoder_hidden_states is not None: + # `context` projections. + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FluxAttnProcessor2_0_NPU: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU" + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + if encoder_hidden_states is not None: + # `context` projections. + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + if query.dtype in (torch.float16, torch.bfloat16): + hidden_states = torch_npu.npu_fusion_attention( + query, + key, + value, + attn.heads, + input_layout="BNSD", + pse=None, + scale=1.0 / math.sqrt(query.shape[-1]), + pre_tockens=65536, + next_tockens=65536, + keep_prob=1.0, + sync=False, + inner_precise=0, + )[0] + else: + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FusedFluxAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + + # `sample` projections. + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + # `context` projections. + if encoder_hidden_states is not None: + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + ( + encoder_hidden_states_query_proj, + encoder_hidden_states_key_proj, + encoder_hidden_states_value_proj, + ) = torch.split(encoder_qkv, split_size, dim=-1) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FusedFluxAttnProcessor2_0_NPU: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU" + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + + # `sample` projections. + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + # `context` projections. + if encoder_hidden_states is not None: + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + ( + encoder_hidden_states_query_proj, + encoder_hidden_states_key_proj, + encoder_hidden_states_value_proj, + ) = torch.split(encoder_qkv, split_size, dim=-1) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + if query.dtype in (torch.float16, torch.bfloat16): + hidden_states = torch_npu.npu_fusion_attention( + query, + key, + value, + attn.heads, + input_layout="BNSD", + pse=None, + scale=1.0 / math.sqrt(query.shape[-1]), + pre_tockens=65536, + next_tockens=65536, + keep_prob=1.0, + sync=False, + inner_precise=0, + )[0] + else: + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module): + """Flux Attention processor for IP-Adapter.""" + + def __init__( + self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None + ): + super().__init__() + + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") + self.scale = scale + + self.to_k_ip = nn.ModuleList( + [ + nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) + for _ in range(len(num_tokens)) + ] + ) + self.to_v_ip = nn.ModuleList( + [ + nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) + for _ in range(len(num_tokens)) + ] + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ip_hidden_states: Optional[List[torch.Tensor]] = None, + ip_adapter_masks: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + + # `sample` projections. + hidden_states_query_proj = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + hidden_states_query_proj = attn.norm_q(hidden_states_query_proj) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + if encoder_hidden_states is not None: + # `context` projections. + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # IP-adapter + ip_query = hidden_states_query_proj + ip_attn_output = None + # for ip-adapter + # TODO: support for multiple adapters + for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( + ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip + ): + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + ip_attn_output = F.scaled_dot_product_attention( + ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False + ) + ip_attn_output = ip_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + ip_attn_output = scale * ip_attn_output + ip_attn_output = ip_attn_output.to(ip_query.dtype) + + return hidden_states, encoder_hidden_states, ip_attn_output + else: + return hidden_states + + +class CogVideoXAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on + query and key vectors, but does not include spatial normalization. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) + if not attn.is_cross_attention: + key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) + + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + encoder_hidden_states, hidden_states = hidden_states.split( + [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 + ) + return hidden_states, encoder_hidden_states + + +class FusedCogVideoXAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on + query and key vectors, but does not include spatial normalization. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + + query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) + if not attn.is_cross_attention: + key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) + + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + encoder_hidden_states, hidden_states = hidden_states.split( + [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 + ) + return hidden_states, encoder_hidden_states + + +class XFormersAttnAddedKVProcessor: + r""" + Processor for implementing memory efficient attention using xFormers. + + Args: + attention_op (`Callable`, *optional*, defaults to `None`): + The base + [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to + use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best + operator. + """ + + def __init__(self, attention_op: Optional[Callable] = None): + self.attention_op = attention_op + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + residual = hidden_states + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + batch_size, sequence_length, _ = hidden_states.shape + + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query) + + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + + hidden_states = xformers.ops.memory_efficient_attention( + query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale + ) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + + return hidden_states + + +class XFormersAttnProcessor: + r""" + Processor for implementing memory efficient attention using xFormers. + + Args: + attention_op (`Callable`, *optional*, defaults to `None`): + The base + [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to + use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best + operator. + """ + + def __init__(self, attention_op: Optional[Callable] = None): + self.attention_op = attention_op + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, key_tokens, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) + if attention_mask is not None: + # expand our mask's singleton query_tokens dimension: + # [batch*heads, 1, key_tokens] -> + # [batch*heads, query_tokens, key_tokens] + # so that it can be added as a bias onto the attention scores that xformers computes: + # [batch*heads, query_tokens, key_tokens] + # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. + _, query_tokens, _ = hidden_states.shape + attention_mask = attention_mask.expand(-1, query_tokens, -1) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + + hidden_states = xformers.ops.memory_efficient_attention( + query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale + ) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class AttnProcessorNPU: + r""" + Processor for implementing flash attention using torch_npu. Torch_npu supports only fp16 and bf16 data types. If + fp32 is used, F.scaled_dot_product_attention will be used for computation, but the acceleration effect on NPU is + not significant. + + """ + + def __init__(self): + if not is_torch_npu_available(): + raise ImportError("AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + if query.dtype in (torch.float16, torch.bfloat16): + hidden_states = torch_npu.npu_fusion_attention( + query, + key, + value, + attn.heads, + input_layout="BNSD", + pse=None, + atten_mask=attention_mask, + scale=1.0 / math.sqrt(query.shape[-1]), + pre_tockens=65536, + next_tockens=65536, + keep_prob=1.0, + sync=False, + inner_precise=0, + )[0] + else: + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class AttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class XLAFlashAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`. + """ + + def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + if is_torch_xla_version("<", "2.3"): + raise ImportError("XLA flash attention requires torch_xla version >= 2.3.") + if is_spmd() and is_torch_xla_version("<", "2.4"): + raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.") + self.partition_spec = partition_spec + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + if all(tensor.shape[2] >= 4096 for tensor in [query, key, value]): + if attention_mask is not None: + attention_mask = attention_mask.view(batch_size, 1, 1, attention_mask.shape[-1]) + # Convert mask to float and replace 0s with -inf and 1s with 0 + attention_mask = ( + attention_mask.float() + .masked_fill(attention_mask == 0, float("-inf")) + .masked_fill(attention_mask == 1, float(0.0)) + ) + + # Apply attention mask to key + key = key + attention_mask + query /= math.sqrt(query.shape[3]) + partition_spec = self.partition_spec if is_spmd() else None + hidden_states = flash_attention(query, key, value, causal=False, partition_spec=partition_spec) + else: + logger.warning( + "Unable to use the flash attention pallas kernel API call due to QKV sequence length < 4096." + ) + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class MochiVaeAttnProcessor2_0: + r""" + Attention processor used in Mochi VAE. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + residual = hidden_states + is_single_frame = hidden_states.shape[1] == 1 + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if is_single_frame: + hidden_states = attn.to_v(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=attn.is_causal + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class StableAudioAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def apply_partial_rotary_emb( + self, + x: torch.Tensor, + freqs_cis: Tuple[torch.Tensor], + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + rot_dim = freqs_cis[0].shape[-1] + x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:] + + x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2) + + out = torch.cat((x_rotated, x_unrotated), dim=-1) + return out + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + residual = hidden_states + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + head_dim = query.shape[-1] // attn.heads + kv_heads = key.shape[-1] // head_dim + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) + + if kv_heads != attn.heads: + # if GQA or MQA, repeat the key/value heads to reach the number of query heads. + heads_per_kv_head = attn.heads // kv_heads + key = torch.repeat_interleave(key, heads_per_kv_head, dim=1) + value = torch.repeat_interleave(value, heads_per_kv_head, dim=1) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if rotary_emb is not None: + query_dtype = query.dtype + key_dtype = key.dtype + query = query.to(torch.float32) + key = key.to(torch.float32) + + rot_dim = rotary_emb[0].shape[-1] + query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:] + query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) + + query = torch.cat((query_rotated, query_unrotated), dim=-1) + + if not attn.is_cross_attention: + key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:] + key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) + + key = torch.cat((key_rotated, key_unrotated), dim=-1) + + query = query.to(query_dtype) + key = key.to(key_dtype) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class HunyuanAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class FusedHunyuanAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused + projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on + query and key vector. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + if encoder_hidden_states is None: + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + else: + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + query = attn.to_q(hidden_states) + + kv = attn.to_kv(encoder_hidden_states) + split_size = kv.shape[-1] // 2 + key, value = torch.split(kv, split_size, dim=-1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class PAGHunyuanAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This + variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + # chunk + hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) + + # 1. Original Path + batch_size, sequence_length, _ = ( + hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states_org) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states_org + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states_org = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # 2. Perturbed Path + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # cat + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class PAGCFGHunyuanAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This + variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + # chunk + hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + + # 1. Original Path + batch_size, sequence_length, _ = ( + hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states_org) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states_org + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states_org = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # 2. Perturbed Path + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # cat + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class LuminaAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is + used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + query_rotary_emb: Optional[torch.Tensor] = None, + key_rotary_emb: Optional[torch.Tensor] = None, + base_sequence_length: Optional[int] = None, + ) -> torch.Tensor: + from .embeddings import apply_rotary_emb + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = hidden_states.shape + + # Get Query-Key-Value Pair + query = attn.to_q(hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query_dim = query.shape[-1] + inner_dim = key.shape[-1] + head_dim = query_dim // attn.heads + dtype = query.dtype + + # Get key-value heads + kv_heads = inner_dim // head_dim + + # Apply Query-Key Norm if needed + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + query = query.view(batch_size, -1, attn.heads, head_dim) + + key = key.view(batch_size, -1, kv_heads, head_dim) + value = value.view(batch_size, -1, kv_heads, head_dim) + + # Apply RoPE if needed + if query_rotary_emb is not None: + query = apply_rotary_emb(query, query_rotary_emb, use_real=False) + if key_rotary_emb is not None: + key = apply_rotary_emb(key, key_rotary_emb, use_real=False) + + query, key = query.to(dtype), key.to(dtype) + + # Apply proportional attention if true + if key_rotary_emb is None: + softmax_scale = None + else: + if base_sequence_length is not None: + softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale + else: + softmax_scale = attn.scale + + # perform Grouped-qurey Attention (GQA) + n_rep = attn.heads // kv_heads + if n_rep >= 1: + key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) + value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) + + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) + attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, scale=softmax_scale + ) + hidden_states = hidden_states.transpose(1, 2).to(dtype) + + return hidden_states + + +class FusedAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses + fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. + For cross-attention modules, key and value projection matrices are fused. + + + + This API is currently 🧪 experimental in nature and can change in future. + + + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + if encoder_hidden_states is None: + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + query, key, value = torch.split(qkv, split_size, dim=-1) + else: + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + query = attn.to_q(hidden_states) + + kv = attn.to_kv(encoder_hidden_states) + split_size = kv.shape[-1] // 2 + key, value = torch.split(kv, split_size, dim=-1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class CustomDiffusionXFormersAttnProcessor(nn.Module): + r""" + Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. + + Args: + train_kv (`bool`, defaults to `True`): + Whether to newly train the key and value matrices corresponding to the text features. + train_q_out (`bool`, defaults to `True`): + Whether to newly train query matrices corresponding to the latent image features. + hidden_size (`int`, *optional*, defaults to `None`): + The hidden size of the attention layer. + cross_attention_dim (`int`, *optional*, defaults to `None`): + The number of channels in the `encoder_hidden_states`. + out_bias (`bool`, defaults to `True`): + Whether to include the bias parameter in `train_q_out`. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + attention_op (`Callable`, *optional*, defaults to `None`): + The base + [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use + as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. + """ + + def __init__( + self, + train_kv: bool = True, + train_q_out: bool = False, + hidden_size: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + out_bias: bool = True, + dropout: float = 0.0, + attention_op: Optional[Callable] = None, + ): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + self.attention_op = attention_op + + # `_custom_diffusion` id for easy serialization and loading. + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) + else: + query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) + + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + + hidden_states = xformers.ops.memory_efficient_attention( + query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale + ) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + + if self.train_q_out: + # linear proj + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + # dropout + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + return hidden_states + + +class CustomDiffusionAttnProcessor2_0(nn.Module): + r""" + Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled + dot-product attention. + + Args: + train_kv (`bool`, defaults to `True`): + Whether to newly train the key and value matrices corresponding to the text features. + train_q_out (`bool`, defaults to `True`): + Whether to newly train query matrices corresponding to the latent image features. + hidden_size (`int`, *optional*, defaults to `None`): + The hidden size of the attention layer. + cross_attention_dim (`int`, *optional*, defaults to `None`): + The number of channels in the `encoder_hidden_states`. + out_bias (`bool`, defaults to `True`): + Whether to include the bias parameter in `train_q_out`. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + """ + + def __init__( + self, + train_kv: bool = True, + train_q_out: bool = True, + hidden_size: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + out_bias: bool = True, + dropout: float = 0.0, + ): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + + # `_custom_diffusion` id for easy serialization and loading. + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + batch_size, sequence_length, _ = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states) + else: + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + + inner_dim = hidden_states.shape[-1] + + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if self.train_q_out: + # linear proj + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + # dropout + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + return hidden_states + + +class SlicedAttnProcessor: + r""" + Processor for implementing sliced attention. + + Args: + slice_size (`int`, *optional*): + The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and + `attention_head_dim` must be a multiple of the `slice_size`. + """ + + def __init__(self, slice_size: int): + self.slice_size = slice_size + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + residual = hidden_states + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + dim = query.shape[-1] + query = attn.head_to_batch_dim(query) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + batch_size_attention, query_tokens, _ = query.shape + hidden_states = torch.zeros( + (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype + ) + + for i in range((batch_size_attention - 1) // self.slice_size + 1): + start_idx = i * self.slice_size + end_idx = (i + 1) * self.slice_size + + query_slice = query[start_idx:end_idx] + key_slice = key[start_idx:end_idx] + attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None + + attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) + + attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) + + hidden_states[start_idx:end_idx] = attn_slice + + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class SlicedAttnAddedKVProcessor: + r""" + Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. + + Args: + slice_size (`int`, *optional*): + The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and + `attention_head_dim` must be a multiple of the `slice_size`. + """ + + def __init__(self, slice_size): + self.slice_size = slice_size + + def __call__( + self, + attn: "Attention", + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + + batch_size, sequence_length, _ = hidden_states.shape + + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + dim = query.shape[-1] + query = attn.head_to_batch_dim(query) + + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + + batch_size_attention, query_tokens, _ = query.shape + hidden_states = torch.zeros( + (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype + ) + + for i in range((batch_size_attention - 1) // self.slice_size + 1): + start_idx = i * self.slice_size + end_idx = (i + 1) * self.slice_size + + query_slice = query[start_idx:end_idx] + key_slice = key[start_idx:end_idx] + attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None + + attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) + + attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) + + hidden_states[start_idx:end_idx] = attn_slice + + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + + return hidden_states + + +class SpatialNorm(nn.Module): + """ + Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. + + Args: + f_channels (`int`): + The number of channels for input to group normalization layer, and output of the spatial norm layer. + zq_channels (`int`): + The number of channels for the quantized vector as described in the paper. + """ + + def __init__( + self, + f_channels: int, + zq_channels: int, + ): + super().__init__() + self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) + self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) + self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: + f_size = f.shape[-2:] + zq = F.interpolate(zq, size=f_size, mode="nearest") + norm_f = self.norm_layer(f) + new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) + return new_f + + +class IPAdapterAttnProcessor(nn.Module): + r""" + Attention processor for Multiple IP-Adapters. + + Args: + hidden_size (`int`): + The hidden size of the attention layer. + cross_attention_dim (`int`): + The number of channels in the `encoder_hidden_states`. + num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): + The context length of the image features. + scale (`float` or List[`float`], defaults to 1.0): + the weight scale of image prompt. + """ + + def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): + super().__init__() + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + self.num_tokens = num_tokens + + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") + self.scale = scale + + self.to_k_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + self.to_v_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + scale: float = 1.0, + ip_adapter_masks: Optional[torch.Tensor] = None, + ): + residual = hidden_states + + # separate ip_hidden_states from encoder_hidden_states + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, tuple): + encoder_hidden_states, ip_hidden_states = encoder_hidden_states + else: + deprecation_message = ( + "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." + " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." + ) + deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) + end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] + encoder_hidden_states, ip_hidden_states = ( + encoder_hidden_states[:, :end_pos, :], + [encoder_hidden_states[:, end_pos:, :]], + ) + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + if ip_adapter_masks is not None: + if not isinstance(ip_adapter_masks, List): + # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] + ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) + if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): + raise ValueError( + f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " + f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " + f"({len(ip_hidden_states)})" + ) + else: + for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): + if not isinstance(mask, torch.Tensor) or mask.ndim != 4: + raise ValueError( + "Each element of the ip_adapter_masks array should be a tensor with shape " + "[1, num_images_for_ip_adapter, height, width]." + " Please use `IPAdapterMaskProcessor` to preprocess your mask" + ) + if mask.shape[1] != ip_state.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of ip images ({ip_state.shape[1]}) at index {index}" + ) + if isinstance(scale, list) and not len(scale) == mask.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of scales ({len(scale)}) at index {index}" + ) + else: + ip_adapter_masks = [None] * len(self.scale) + + # for ip-adapter + for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( + ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks + ): + skip = False + if isinstance(scale, list): + if all(s == 0 for s in scale): + skip = True + elif scale == 0: + skip = True + if not skip: + if mask is not None: + if not isinstance(scale, list): + scale = [scale] * mask.shape[1] + + current_num_images = mask.shape[1] + for i in range(current_num_images): + ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) + ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) + + ip_key = attn.head_to_batch_dim(ip_key) + ip_value = attn.head_to_batch_dim(ip_value) + + ip_attention_probs = attn.get_attention_scores(query, ip_key, None) + _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) + _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) + + mask_downsample = IPAdapterMaskProcessor.downsample( + mask[:, i, :, :], + batch_size, + _current_ip_hidden_states.shape[1], + _current_ip_hidden_states.shape[2], + ) + + mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) + + hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) + else: + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + + ip_key = attn.head_to_batch_dim(ip_key) + ip_value = attn.head_to_batch_dim(ip_value) + + ip_attention_probs = attn.get_attention_scores(query, ip_key, None) + current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) + current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) + + hidden_states = hidden_states + scale * current_ip_hidden_states + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class IPAdapterAttnProcessor2_0(torch.nn.Module): + r""" + Attention processor for IP-Adapter for PyTorch 2.0. + + Args: + hidden_size (`int`): + The hidden size of the attention layer. + cross_attention_dim (`int`): + The number of channels in the `encoder_hidden_states`. + num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): + The context length of the image features. + scale (`float` or `List[float]`, defaults to 1.0): + the weight scale of image prompt. + """ + + def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): + super().__init__() + + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + self.num_tokens = num_tokens + + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") + self.scale = scale + + self.to_k_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + self.to_v_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + temb: Optional[torch.Tensor] = None, + scale: float = 1.0, + ip_adapter_masks: Optional[torch.Tensor] = None, + ): + residual = hidden_states + + # separate ip_hidden_states from encoder_hidden_states + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, tuple): + encoder_hidden_states, ip_hidden_states = encoder_hidden_states + else: + deprecation_message = ( + "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." + " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." + ) + deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) + end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] + encoder_hidden_states, ip_hidden_states = ( + encoder_hidden_states[:, :end_pos, :], + [encoder_hidden_states[:, end_pos:, :]], + ) + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if ip_adapter_masks is not None: + if not isinstance(ip_adapter_masks, List): + # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] + ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) + if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): + raise ValueError( + f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " + f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " + f"({len(ip_hidden_states)})" + ) + else: + for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): + if not isinstance(mask, torch.Tensor) or mask.ndim != 4: + raise ValueError( + "Each element of the ip_adapter_masks array should be a tensor with shape " + "[1, num_images_for_ip_adapter, height, width]." + " Please use `IPAdapterMaskProcessor` to preprocess your mask" + ) + if mask.shape[1] != ip_state.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of ip images ({ip_state.shape[1]}) at index {index}" + ) + if isinstance(scale, list) and not len(scale) == mask.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of scales ({len(scale)}) at index {index}" + ) + else: + ip_adapter_masks = [None] * len(self.scale) + + # for ip-adapter + for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( + ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks + ): + skip = False + if isinstance(scale, list): + if all(s == 0 for s in scale): + skip = True + elif scale == 0: + skip = True + if not skip: + if mask is not None: + if not isinstance(scale, list): + scale = [scale] * mask.shape[1] + + current_num_images = mask.shape[1] + for i in range(current_num_images): + ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) + ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) + + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + _current_ip_hidden_states = F.scaled_dot_product_attention( + query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False + ) + + _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) + + mask_downsample = IPAdapterMaskProcessor.downsample( + mask[:, i, :, :], + batch_size, + _current_ip_hidden_states.shape[1], + _current_ip_hidden_states.shape[2], + ) + + mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) + hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) + else: + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + current_ip_hidden_states = F.scaled_dot_product_attention( + query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False + ) + + current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) + + hidden_states = hidden_states + scale * current_ip_hidden_states + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class IPAdapterXFormersAttnProcessor(torch.nn.Module): + r""" + Attention processor for IP-Adapter using xFormers. + + Args: + hidden_size (`int`): + The hidden size of the attention layer. + cross_attention_dim (`int`): + The number of channels in the `encoder_hidden_states`. + num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): + The context length of the image features. + scale (`float` or `List[float]`, defaults to 1.0): + the weight scale of image prompt. + attention_op (`Callable`, *optional*, defaults to `None`): + The base + [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to + use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best + operator. + """ + + def __init__( + self, + hidden_size, + cross_attention_dim=None, + num_tokens=(4,), + scale=1.0, + attention_op: Optional[Callable] = None, + ): + super().__init__() + + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + self.attention_op = attention_op + + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + self.num_tokens = num_tokens + + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") + self.scale = scale + + self.to_k_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + self.to_v_ip = nn.ModuleList( + [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + scale: float = 1.0, + ip_adapter_masks: Optional[torch.FloatTensor] = None, + ): + residual = hidden_states + + # separate ip_hidden_states from encoder_hidden_states + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, tuple): + encoder_hidden_states, ip_hidden_states = encoder_hidden_states + else: + deprecation_message = ( + "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." + " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." + ) + deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) + end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] + encoder_hidden_states, ip_hidden_states = ( + encoder_hidden_states[:, :end_pos, :], + [encoder_hidden_states[:, end_pos:, :]], + ) + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # expand our mask's singleton query_tokens dimension: + # [batch*heads, 1, key_tokens] -> + # [batch*heads, query_tokens, key_tokens] + # so that it can be added as a bias onto the attention scores that xformers computes: + # [batch*heads, query_tokens, key_tokens] + # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. + _, query_tokens, _ = hidden_states.shape + attention_mask = attention_mask.expand(-1, query_tokens, -1) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + + hidden_states = xformers.ops.memory_efficient_attention( + query, key, value, attn_bias=attention_mask, op=self.attention_op + ) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + + if ip_hidden_states: + if ip_adapter_masks is not None: + if not isinstance(ip_adapter_masks, List): + # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] + ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) + if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): + raise ValueError( + f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " + f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " + f"({len(ip_hidden_states)})" + ) + else: + for index, (mask, scale, ip_state) in enumerate( + zip(ip_adapter_masks, self.scale, ip_hidden_states) + ): + if mask is None: + continue + if not isinstance(mask, torch.Tensor) or mask.ndim != 4: + raise ValueError( + "Each element of the ip_adapter_masks array should be a tensor with shape " + "[1, num_images_for_ip_adapter, height, width]." + " Please use `IPAdapterMaskProcessor` to preprocess your mask" + ) + if mask.shape[1] != ip_state.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of ip images ({ip_state.shape[1]}) at index {index}" + ) + if isinstance(scale, list) and not len(scale) == mask.shape[1]: + raise ValueError( + f"Number of masks ({mask.shape[1]}) does not match " + f"number of scales ({len(scale)}) at index {index}" + ) + else: + ip_adapter_masks = [None] * len(self.scale) + + # for ip-adapter + for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( + ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks + ): + skip = False + if isinstance(scale, list): + if all(s == 0 for s in scale): + skip = True + elif scale == 0: + skip = True + if not skip: + if mask is not None: + mask = mask.to(torch.float16) + if not isinstance(scale, list): + scale = [scale] * mask.shape[1] + + current_num_images = mask.shape[1] + for i in range(current_num_images): + ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) + ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) + + ip_key = attn.head_to_batch_dim(ip_key).contiguous() + ip_value = attn.head_to_batch_dim(ip_value).contiguous() + + _current_ip_hidden_states = xformers.ops.memory_efficient_attention( + query, ip_key, ip_value, op=self.attention_op + ) + _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) + _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) + + mask_downsample = IPAdapterMaskProcessor.downsample( + mask[:, i, :, :], + batch_size, + _current_ip_hidden_states.shape[1], + _current_ip_hidden_states.shape[2], + ) + + mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) + hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) + else: + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + + ip_key = attn.head_to_batch_dim(ip_key).contiguous() + ip_value = attn.head_to_batch_dim(ip_value).contiguous() + + current_ip_hidden_states = xformers.ops.memory_efficient_attention( + query, ip_key, ip_value, op=self.attention_op + ) + current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) + current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) + + hidden_states = hidden_states + scale * current_ip_hidden_states + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class SD3IPAdapterJointAttnProcessor2_0(torch.nn.Module): + """ + Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with + additional image-based information and timestep embeddings. + + Args: + hidden_size (`int`): + The number of hidden channels. + ip_hidden_states_dim (`int`): + The image feature dimension. + head_dim (`int`): + The number of head channels. + timesteps_emb_dim (`int`, defaults to 1280): + The number of input channels for timestep embedding. + scale (`float`, defaults to 0.5): + IP-Adapter scale. + """ + + def __init__( + self, + hidden_size: int, + ip_hidden_states_dim: int, + head_dim: int, + timesteps_emb_dim: int = 1280, + scale: float = 0.5, + ): + super().__init__() + + # To prevent circular import + from .normalization import AdaLayerNorm, RMSNorm + + self.norm_ip = AdaLayerNorm(timesteps_emb_dim, output_dim=ip_hidden_states_dim * 2, norm_eps=1e-6, chunk_dim=1) + self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) + self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) + self.norm_q = RMSNorm(head_dim, 1e-6) + self.norm_k = RMSNorm(head_dim, 1e-6) + self.norm_ip_k = RMSNorm(head_dim, 1e-6) + self.scale = scale + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + ip_hidden_states: torch.FloatTensor = None, + temb: torch.FloatTensor = None, + ) -> torch.FloatTensor: + """ + Perform the attention computation, integrating image features (if provided) and timestep embeddings. + + If `ip_hidden_states` is `None`, this is equivalent to using JointAttnProcessor2_0. + + Args: + attn (`Attention`): + Attention instance. + hidden_states (`torch.FloatTensor`): + Input `hidden_states`. + encoder_hidden_states (`torch.FloatTensor`, *optional*): + The encoder hidden states. + attention_mask (`torch.FloatTensor`, *optional*): + Attention mask. + ip_hidden_states (`torch.FloatTensor`, *optional*): + Image embeddings. + temb (`torch.FloatTensor`, *optional*): + Timestep embeddings. + + Returns: + `torch.FloatTensor`: Output hidden states. + """ + residual = hidden_states + + batch_size = hidden_states.shape[0] + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + img_query = query + img_key = key + img_value = value + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # `context` projections. + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + + query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) + + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + # Split the attention outputs. + hidden_states, encoder_hidden_states = ( + hidden_states[:, : residual.shape[1]], + hidden_states[:, residual.shape[1] :], + ) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # IP Adapter + if self.scale != 0 and ip_hidden_states is not None: + # Norm image features + norm_ip_hidden_states = self.norm_ip(ip_hidden_states, temb=temb) + + # To k and v + ip_key = self.to_k_ip(norm_ip_hidden_states) + ip_value = self.to_v_ip(norm_ip_hidden_states) + + # Reshape + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # Norm + query = self.norm_q(img_query) + img_key = self.norm_k(img_key) + ip_key = self.norm_ip_k(ip_key) + + # cat img + key = torch.cat([img_key, ip_key], dim=2) + value = torch.cat([img_value, ip_value], dim=2) + + ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + ip_hidden_states = ip_hidden_states.transpose(1, 2).view(batch_size, -1, attn.heads * head_dim) + ip_hidden_states = ip_hidden_states.to(query.dtype) + + hidden_states = hidden_states + ip_hidden_states * self.scale + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if encoder_hidden_states is not None: + return hidden_states, encoder_hidden_states + else: + return hidden_states + + +class PAGIdentitySelfAttnProcessor2_0: + r""" + Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + PAG reference: https://arxiv.org/abs/2403.17377 + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + # chunk + hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) + + # original path + batch_size, sequence_length, _ = hidden_states_org.shape + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states_org = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # perturbed path (identity attention) + batch_size, sequence_length, _ = hidden_states_ptb.shape + + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # cat + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class PAGCFGIdentitySelfAttnProcessor2_0: + r""" + Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + PAG reference: https://arxiv.org/abs/2403.17377 + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + # chunk + hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + + # original path + batch_size, sequence_length, _ = hidden_states_org.shape + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + hidden_states_org = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + + # linear proj + hidden_states_org = attn.to_out[0](hidden_states_org) + # dropout + hidden_states_org = attn.to_out[1](hidden_states_org) + + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # perturbed path (identity attention) + batch_size, sequence_length, _ = hidden_states_ptb.shape + + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + + value = attn.to_v(hidden_states_ptb) + hidden_states_ptb = value + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + + # linear proj + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + # dropout + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + + # cat + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class SanaMultiscaleAttnProcessor2_0: + r""" + Processor for implementing multiscale quadratic attention. + """ + + def __call__(self, attn: SanaMultiscaleLinearAttention, hidden_states: torch.Tensor) -> torch.Tensor: + height, width = hidden_states.shape[-2:] + if height * width > attn.attention_head_dim: + use_linear_attention = True + else: + use_linear_attention = False + + residual = hidden_states + + batch_size, _, height, width = list(hidden_states.size()) + original_dtype = hidden_states.dtype + + hidden_states = hidden_states.movedim(1, -1) + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + hidden_states = torch.cat([query, key, value], dim=3) + hidden_states = hidden_states.movedim(-1, 1) + + multi_scale_qkv = [hidden_states] + for block in attn.to_qkv_multiscale: + multi_scale_qkv.append(block(hidden_states)) + + hidden_states = torch.cat(multi_scale_qkv, dim=1) + + if use_linear_attention: + # for linear attention upcast hidden_states to float32 + hidden_states = hidden_states.to(dtype=torch.float32) + + hidden_states = hidden_states.reshape(batch_size, -1, 3 * attn.attention_head_dim, height * width) + + query, key, value = hidden_states.chunk(3, dim=2) + query = attn.nonlinearity(query) + key = attn.nonlinearity(key) + + if use_linear_attention: + hidden_states = attn.apply_linear_attention(query, key, value) + hidden_states = hidden_states.to(dtype=original_dtype) + else: + hidden_states = attn.apply_quadratic_attention(query, key, value) + + hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) + hidden_states = attn.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1) + + if attn.norm_type == "rms_norm": + hidden_states = attn.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) + else: + hidden_states = attn.norm_out(hidden_states) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + return hidden_states + + +class LoRAAttnProcessor: + r""" + Processor for implementing attention with LoRA. + """ + + def __init__(self): + pass + + +class LoRAAttnProcessor2_0: + r""" + Processor for implementing attention with LoRA (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self): + pass + + +class LoRAXFormersAttnProcessor: + r""" + Processor for implementing attention with LoRA using xFormers. + """ + + def __init__(self): + pass + + +class LoRAAttnAddedKVProcessor: + r""" + Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder. + """ + + def __init__(self): + pass + + +class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0): + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self): + deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead." + deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message) + super().__init__() + + +class SanaLinearAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product linear attention. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + original_dtype = hidden_states.dtype + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + + query = attn.to_q(hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) + key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) + value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) + + query = F.relu(query) + key = F.relu(key) + + query, key, value = query.float(), key.float(), value.float() + + value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) + scores = torch.matmul(value, key) + hidden_states = torch.matmul(scores, query) + + hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + 1e-15) + hidden_states = hidden_states.flatten(1, 2).transpose(1, 2) + hidden_states = hidden_states.to(original_dtype) + + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + + if original_dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +class PAGCFGSanaLinearAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product linear attention. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + original_dtype = hidden_states.dtype + + hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + + query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) + key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) + value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) + + query = F.relu(query) + key = F.relu(key) + + query, key, value = query.float(), key.float(), value.float() + + value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) + scores = torch.matmul(value, key) + hidden_states_org = torch.matmul(scores, query) + + hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) + hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) + hidden_states_org = hidden_states_org.to(original_dtype) + + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + + # perturbed path (identity attention) + hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) + + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if original_dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +class PAGIdentitySanaLinearAttnProcessor2_0: + r""" + Processor for implementing scaled dot-product linear attention. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + original_dtype = hidden_states.dtype + + hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) + + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + + query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) + key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) + value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) + + query = F.relu(query) + key = F.relu(key) + + query, key, value = query.float(), key.float(), value.float() + + value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) + scores = torch.matmul(value, key) + hidden_states_org = torch.matmul(scores, query) + + if hidden_states_org.dtype in [torch.float16, torch.bfloat16]: + hidden_states_org = hidden_states_org.float() + + hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) + hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) + hidden_states_org = hidden_states_org.to(original_dtype) + + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + + # perturbed path (identity attention) + hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) + + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + + if original_dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +ADDED_KV_ATTENTION_PROCESSORS = ( + AttnAddedKVProcessor, + SlicedAttnAddedKVProcessor, + AttnAddedKVProcessor2_0, + XFormersAttnAddedKVProcessor, +) + +CROSS_ATTENTION_PROCESSORS = ( + AttnProcessor, + AttnProcessor2_0, + XFormersAttnProcessor, + SlicedAttnProcessor, + IPAdapterAttnProcessor, + IPAdapterAttnProcessor2_0, + FluxIPAdapterJointAttnProcessor2_0, +) + +AttentionProcessor = Union[ + AttnProcessor, + CustomDiffusionAttnProcessor, + AttnAddedKVProcessor, + AttnAddedKVProcessor2_0, + JointAttnProcessor2_0, + PAGJointAttnProcessor2_0, + PAGCFGJointAttnProcessor2_0, + FusedJointAttnProcessor2_0, + AllegroAttnProcessor2_0, + AuraFlowAttnProcessor2_0, + FusedAuraFlowAttnProcessor2_0, + FluxAttnProcessor2_0, + FluxAttnProcessor2_0_NPU, + FusedFluxAttnProcessor2_0, + FusedFluxAttnProcessor2_0_NPU, + CogVideoXAttnProcessor2_0, + FusedCogVideoXAttnProcessor2_0, + XFormersAttnAddedKVProcessor, + XFormersAttnProcessor, + XLAFlashAttnProcessor2_0, + AttnProcessorNPU, + AttnProcessor2_0, + MochiVaeAttnProcessor2_0, + MochiAttnProcessor2_0, + StableAudioAttnProcessor2_0, + HunyuanAttnProcessor2_0, + FusedHunyuanAttnProcessor2_0, + PAGHunyuanAttnProcessor2_0, + PAGCFGHunyuanAttnProcessor2_0, + LuminaAttnProcessor2_0, + FusedAttnProcessor2_0, + CustomDiffusionXFormersAttnProcessor, + CustomDiffusionAttnProcessor2_0, + SlicedAttnProcessor, + SlicedAttnAddedKVProcessor, + SanaLinearAttnProcessor2_0, + PAGCFGSanaLinearAttnProcessor2_0, + PAGIdentitySanaLinearAttnProcessor2_0, + SanaMultiscaleLinearAttention, + SanaMultiscaleAttnProcessor2_0, + SanaMultiscaleAttentionProjection, + IPAdapterAttnProcessor, + IPAdapterAttnProcessor2_0, + IPAdapterXFormersAttnProcessor, + SD3IPAdapterJointAttnProcessor2_0, + PAGIdentitySelfAttnProcessor2_0, + PAGCFGIdentitySelfAttnProcessor2_0, + LoRAAttnProcessor, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + LoRAAttnAddedKVProcessor, +]