from __future__ import annotations from pathlib import Path import yaml from huggingface_hub import hf_hub_download from src.constants import MODEL_REPO, MODEL_REPO_TYPE def get_mp4_paths(environments: list[str]) -> dict[str, Path]: mp4_paths: dict[str, Path] = {} for env in environments: mp4_paths[env] = get_best(env, filename="demo.mp4") return mp4_paths def get_best(env: str, filename: str = "demo.mp4") -> Path: hf_env_results_path = f"models/{env}/results.yaml" local_env_results_path = hf_hub_download( repo_id=MODEL_REPO, repo_type=MODEL_REPO_TYPE, filename=hf_env_results_path, ) with Path(local_env_results_path).open() as f: env_results = yaml.safe_load(f) best_model_type = max(env_results, key=lambda model: env_results[model]) model_results_path = f"models/{env}/{best_model_type}/results.yaml" local_model_results_path = hf_hub_download( repo_id=MODEL_REPO, repo_type=MODEL_REPO_TYPE, filename=model_results_path, ) with Path(local_model_results_path).open() as f: model_results = yaml.safe_load(f) best_model = max(model_results, key=lambda model: model_results[model]) hf_gif_path = f"models/{env}/{best_model_type}/{best_model}/{filename}" return Path(hf_hub_download(repo_id=MODEL_REPO, repo_type=MODEL_REPO_TYPE, filename=hf_gif_path))