c-walls commited on
Commit
2547cbf
·
1 Parent(s): be92a95
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -2,20 +2,22 @@ import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
 
5
- model = tf.saved_model.load("/home/user/app/model")
 
6
  labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
7
 
8
  def mnist_classifier(img):
9
  img_tensor = tf.convert_to_tensor(img['composite'], dtype=tf.float32)
10
- img_tensor = tf.image.resize(img_tensor, [28, 28])
11
-
12
- # Normalize and expand to add the batch dimension
 
13
  img_tensor /= 255.0
14
- img_tensor = tf.expand_dims(img_tensor, 0)
15
 
16
  prediction = model.signatures['serving_default'](img_tensor)
17
- print(model.signatures['serving_default'].structured_outputs)
18
- return str(tf.argmax(prediction['output_0'], axis=1).numpy()[0])
19
 
20
  demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.")
21
  demo.launch()
 
2
  import tensorflow as tf
3
  import numpy as np
4
 
5
+ # model = tf.saved_model.load("/home/user/app/model")
6
+ model = tf.saved_model.load("C:\\Users\\caleb\\OneDrive\\Documents\\Coding Projects\\INFX_639\\mnist_checker\\model")
7
  labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
8
 
9
  def mnist_classifier(img):
10
  img_tensor = tf.convert_to_tensor(img['composite'], dtype=tf.float32)
11
+ img_tensor = tf.expand_dims(img_tensor[:, :, -1], axis=-1) # Select the last channel
12
+ img_tensor = tf.image.resize(img_tensor, [28, 28])
13
+
14
+ # Normalize and flatten
15
  img_tensor /= 255.0
16
+ img_tensor = tf.reshape(img_tensor, (1, 784))
17
 
18
  prediction = model.signatures['serving_default'](img_tensor)
19
+ prediction = tf.argmax(prediction['output'], axis=1).numpy()
20
+ return str(prediction[0])
21
 
22
  demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.")
23
  demo.launch()