c-walls commited on
Commit
e899f0f
·
1 Parent(s): 0c036c4

add model access

Browse files
Files changed (1) hide show
  1. app.py +12 -7
app.py CHANGED
@@ -1,14 +1,19 @@
1
  import gradio as gr
2
  import tensorflow as tf
3
 
4
- #model = tf.keras.models.load_model("mnist_checker/model/saved_model.pb")
5
 
6
  def mnist_classifier(img):
7
- #img = tf.image.resize(img, [28, 28])
8
- #img = tf.cast(img, tf.float32)
9
- print("Background: " + len(img['background']) + type(img['background']))
10
- print("Composite: " + len(img['composite']) + type(img['composite']))
11
- print("Layers: " + len(img['layers']) + type(img['layers']))
 
 
 
 
 
12
 
13
  demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.")
14
- demo.launch()
 
1
  import gradio as gr
2
  import tensorflow as tf
3
 
4
+ model = tf.keras.models.load_model("saved_model.pb")
5
 
6
  def mnist_classifier(img):
7
+ # Convert the image input to a tensor
8
+ img_tensor = tf.convert_to_tensor(img['composite'], dtype=tf.float32)
9
+ img_tensor = tf.image.resize(img_tensor, [28, 28])
10
+
11
+ # Normalize and expand to add the batch dimension
12
+ img_tensor /= 255.0
13
+ img_tensor = tf.expand_dims(img_tensor, 0)
14
+
15
+ #prediction = model.predict(img_tensor)
16
+ return "Hi"
17
 
18
  demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.")
19
+ demo.launch(share=True)