import gradio as gr import tensorflow as tf model = tf.saved_model.load("/home/user/app/model") def mnist_classifier(img): # Convert the image input to a tensor img_tensor = tf.convert_to_tensor(img['composite'], dtype=tf.float32) img_tensor = tf.image.resize(img_tensor, [28, 28]) # Normalize and expand to add the batch dimension img_tensor /= 255.0 img_tensor = tf.expand_dims(img_tensor, 0) #prediction = model.predict(img_tensor) return "Hi" demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.") demo.launch(share=True)