c00cjz00 commited on
Commit
222ead6
·
1 Parent(s): aa4c13e

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +45 -0
  2. model_Resnet18.pkl +3 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.vision.all import *
2
+ from io import BytesIO
3
+ import requests
4
+ import streamlit as st
5
+
6
+ """
7
+ # Cat type classification
8
+ This is a classifier for images of cat typpe. It was trained on simulated images.
9
+ """
10
+
11
+ def predict(img):
12
+ st.image(img, caption="Your image", use_column_width=True)
13
+ pred, key, probs = learn_inf.predict(img)
14
+ # st.write(learn_inf.predict(img))
15
+
16
+ f"""
17
+ ## This **{'is ' if pred == 'mi' else 'is not'}** an MI (heart attack).
18
+ ### Rediction result: {pred}
19
+ ### Probability of {pred}: {probs[key].item()*100: .2f}%
20
+ """
21
+
22
+
23
+ path = "./"
24
+ learn_inf = load_learner(path + "model_Resnet18.pkl")
25
+
26
+ option = st.radio("", ["Upload Image", "Image URL"])
27
+
28
+ if option == "Upload Image":
29
+ uploaded_file = st.file_uploader("Please upload an image.")
30
+
31
+ if uploaded_file is not None:
32
+ img = PILImage.create(uploaded_file)
33
+ predict(img)
34
+
35
+ else:
36
+ url = st.text_input("Please input a url.")
37
+
38
+ if url != "":
39
+ try:
40
+ response = requests.get(url)
41
+ pil_img = PILImage.create(BytesIO(response.content))
42
+ predict(pil_img)
43
+
44
+ except:
45
+ st.text("Problem reading image from", url)
model_Resnet18.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f08a78f91aa6f40a04cb92f8cb6c929d8c06809a11fd308cf28da0d560bb71c
3
+ size 46964655
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ fastbook