c00cjz00 commited on
Commit
806af8f
·
1 Parent(s): 7d7a273

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -7
app.py CHANGED
@@ -1,24 +1,32 @@
 
1
  import gradio as gr
2
  from fastai.vision.all import *
3
- import skimage
4
 
 
5
  learn = load_learner('pets-model.pkl')
6
-
7
  labels = learn.dls.vocab
8
 
9
-
10
  def predict(img):
11
  img = PILImage.create(img)
12
  pred, pred_idx, probs = learn.predict(img)
13
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
14
 
15
-
16
  title = "Pet Breed Classifier"
17
  description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
18
  article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
19
- examples = ['siamese.jpg']
20
  interpretation = 'default'
21
  enable_queue = True
22
 
23
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title,
24
- description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()
 
 
 
 
 
 
 
 
 
 
1
+ # %% app.ipynb 1
2
  import gradio as gr
3
  from fastai.vision.all import *
 
4
 
5
+ # %% app.ipynb 2
6
  learn = load_learner('pets-model.pkl')
 
7
  labels = learn.dls.vocab
8
 
9
+ # %% app.ipynb 3
10
  def predict(img):
11
  img = PILImage.create(img)
12
  pred, pred_idx, probs = learn.predict(img)
13
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
14
 
15
+ # %% app.ipynb 4
16
  title = "Pet Breed Classifier"
17
  description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
18
  article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
 
19
  interpretation = 'default'
20
  enable_queue = True
21
 
22
+
23
+ # %% app.ipynb 5
24
+ image = gr.inputs.Image(shape=(224,224))
25
+ label = gr.outputs.Label(num_top_classes=3)
26
+ examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
27
+
28
+ # %% app.ipynb 6
29
+ intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title,
30
+ description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue)
31
+ intf.launch(inline=False)
32
+