Spaces:
Sleeping
Sleeping
File size: 10,816 Bytes
4eafb07 6089428 4eafb07 6089428 4eafb07 63c9dae 4eafb07 63c9dae 4eafb07 63c9dae 4eafb07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import base64
from csv import DictWriter
import os.path as os_path
from plotly.graph_objects import Figure
import gradio as gr
from pandas import read_csv, DataFrame
import emission_calculator.calculator as ec
DATA_PATH = "./reports/historic_data.csv"
def compute_history() -> Figure:
if not os_path.exists(DATA_PATH):
f = open(DATA_PATH, "xt")
f.write("Name,Energy Usage,Waste Generated,Business Travel")
f.close()
df = DataFrame.from_dict({})
else:
df = read_csv(DATA_PATH)
return ec.draw_historic_figure(df)
def validate_input(
company_name: str,
avg_electric_bill: float,
avg_gas_bill: float,
avg_transport_cost: float,
monthly_waste_generated: float,
recycled_waste_percent: float,
annual_travel_kms: float,
fuel_efficiency: float,
) -> None:
"""
Comprehensive validation for input parameters with non-zero requirements
"""
# Company Name Validation
if not company_name or company_name.isspace():
raise gr.Error("Company name cannot be empty or just whitespace!")
if len(company_name) > 100:
raise gr.Error("Company name is too long (maximum 100 characters)!")
# Non-Zero Input Validation
non_zero_fields = [
("Electricity Bill", avg_electric_bill),
("Gas Bill", avg_gas_bill),
("Transport Cost", avg_transport_cost),
("Monthly Waste", monthly_waste_generated),
("Annual Travel Distance", annual_travel_kms),
("Fuel Efficiency", fuel_efficiency),
]
for name, value in non_zero_fields:
try:
float_val = float(value)
except (TypeError, ValueError):
raise gr.Error(f"{name} must be a valid number!")
if float_val <= 0:
raise gr.Error(f"{name} must be a positive number greater than zero!")
# Additional realistic range checks
if name == "Electricity Bill" and float_val > 10000:
raise gr.Error(
"Electricity bill seems unrealistically high. Please check the amount!"
)
if name == "Monthly Waste" and float_val > 1000:
raise gr.Error(
"Monthly waste generation seems extremely high. Please verify!"
)
if name == "Fuel Efficiency" :
if float_val < 5:
raise gr.Error(
"Fuel efficiency seems unrealistically low. Please verify!"
)
if float_val > 15:
raise gr.Error(
"Fuel efficiency is very high. Please verify!"
)
# Percentage-specific validation
try:
recycled_percent = float(recycled_waste_percent)
except (TypeError, ValueError):
raise gr.Error("Recycled waste percentage must be a valid number!")
if recycled_percent < 0 or recycled_percent > 100:
raise gr.Error("Recycled waste percentage must be between 1 and 100!")
def compute(
company_name: str,
avg_electric_bill: float,
avg_gas_bill: float,
avg_transport_cost: float,
monthly_waste_generated: float,
recycled_waste_percent: float,
annual_travel_kms: float,
fuel_efficiency: float,
) -> tuple[str, gr.Button]:
"""
Compute carbon footprint with comprehensive input validation
Returns:
result (tuple)
of summary HTML (str)
and download_report button (Button)
"""
# Validate inputs first
validate_input(
company_name,
avg_electric_bill,
avg_gas_bill,
avg_transport_cost,
monthly_waste_generated,
recycled_waste_percent,
annual_travel_kms,
fuel_efficiency,
)
# Proceed with calculation if validation passes
df = ec.make_dataframe(
company_name=company_name,
avg_electric_bill=avg_electric_bill,
avg_gas_bill=avg_gas_bill,
avg_transport_bill=avg_transport_cost,
monthly_waste_generated=monthly_waste_generated,
recycled_waste_percent=recycled_waste_percent,
annual_travel_kms=annual_travel_kms,
fuel_efficiency=fuel_efficiency,
)
try:
df_dump = ec.dataframe_to_dict(df=df)
with open(DATA_PATH, mode="a") as f:
w = DictWriter(f, fieldnames=df_dump.keys())
if not os_path.exists(DATA_PATH):
w.writeheader()
w.writerow(df_dump)
print("Saving is successful")
except Exception as e:
print(e)
plot = ec.draw_report_figure(df)
# Convert plot to base64 image
img_data = base64.b64encode(
plot.to_image(width=1400, height=800, format="png")
).decode("utf-8")
# convert plot to pdf for downloading report
file_path = f"./reports/{company_name.lower().replace(' ', '_')[:10]}_report.pdf"
plot.write_image(file_path, width=1400, height=800)
# Generate a summary HTML with embedded image
summary = f"""
<div style="max-width: 1400px; margin: 0 auto; font-family: Arial, sans-serif;">
<h3 style="color: #ffffff;"> Carbon Footprint Summary for {company_name} </h3>
<ul style="color: #666;">
<li>π <strong>Total Carbon Impact</strong>: Calculated based on your inputs</li>
<li>π‘ <strong>Energy Consumption</strong>: β¬{avg_electric_bill + avg_gas_bill:.2f}</li>
<li>π <strong>Transportation Emissions</strong>: {annual_travel_kms} km</li>
<li>ποΈ <strong>Waste Management</strong>: {monthly_waste_generated} kg (Recycled: {recycled_waste_percent}%)</li>
</ul>
<img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Carbon Footprint Report"/>
</div>
"""
download_button = gr.DownloadButton(
"Download Report", variant="secondary", visible=True, value=file_path
)
return summary, download_button
def create_carbon_footprint_app() -> gr.Blocks:
with gr.Blocks(theme="soft") as demo:
with gr.Tab("Calculator π±"):
gr.Markdown("# π Carbon Footprint Calculator")
# Hidden image download button
download_button = gr.File(
label="Download Carbon Footprint Report", type="binary", visible=False
)
with gr.Column():
with gr.Column(scale=2):
with gr.Column(variant="compact"):
company_name = gr.Textbox(
label="Company Name",
placeholder="Enter your company name",
info="Required: Full legal company name",
)
with gr.Row():
with gr.Column(variant="panel"):
avg_electric_bill = gr.Number(
value=1.0,
label="Average Electricity Bill (β¬)",
minimum=0.01,
info="Monthly electricity expenses",
)
avg_gas_bill = gr.Number(
value=1.0,
label="Average Gas Bill (β¬)",
minimum=0.01,
info="Monthly natural gas expenses",
)
avg_transport_cost = gr.Number(
value=1.0,
label="Average Transport Cost (β¬)",
info="Monthly Fuel bill for transport",
)
with gr.Row(variant="panel"):
with gr.Column(variant="compact"):
annual_travel_kms = gr.Number(
value=1.0,
label="Annual Business Travel (km)",
minimum=0.01,
info="Total kilometers traveled by employees",
)
fuel_efficiency = gr.Number(
value=1.0,
label="Vehicle Fuel Efficiency (L/100 km)",
minimum=0.01,
info="Average fleet fuel consumption",
)
with gr.Column(variant="compact"):
monthly_waste_generated = gr.Number(
value=1.0,
label="Monthly Waste Generated (kg)",
minimum=0.01,
info="Total waste produced monthly",
)
recycled_waste_percent = gr.Number(
value=0.0,
label="Recycled Waste (%)",
minimum=0.0,
maximum=100.0,
info="Percentage of waste recycled",
)
with gr.Column(scale=2):
output_plot = gr.HTML(label="Carbon Footprint Report")
# Create a row for buttons
with gr.Row():
submit_button = gr.Button("Generate Report", variant="primary")
download_button = gr.DownloadButton(
"Download Report", variant="secondary", visible=False
)
submit_button.click(
fn=compute,
inputs=[
company_name,
avg_electric_bill,
avg_gas_bill,
avg_transport_cost,
monthly_waste_generated,
recycled_waste_percent,
annual_travel_kms,
fuel_efficiency,
],
outputs=[output_plot, download_button],
)
with gr.Tab("History π") as historic_tab:
gr.Markdown("# Historic Company Data")
plot = gr.Plot(value=compute_history(), label="Historic Data")
refresh = gr.Button("Refresh", variant="secondary")
refresh.click(
fn=compute_history,
outputs=[plot],
)
# auto-reload
historic_tab.select(
fn=compute_history,
outputs=[plot],
)
return demo
if __name__ == "__main__":
create_carbon_footprint_app().launch()
|