File size: 10,816 Bytes
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6089428
 
 
 
 
 
 
 
 
 
4eafb07
 
 
 
 
 
 
 
6089428
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9dae
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eafb07
63c9dae
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import base64

from csv import DictWriter
import os.path as os_path

from plotly.graph_objects import Figure
import gradio as gr
from pandas import read_csv, DataFrame
import emission_calculator.calculator as ec

DATA_PATH = "./reports/historic_data.csv"


def compute_history() -> Figure:
    if not os_path.exists(DATA_PATH):
        f = open(DATA_PATH, "xt")
        f.write("Name,Energy Usage,Waste Generated,Business Travel")
        f.close()
        df = DataFrame.from_dict({})
    else:
        df = read_csv(DATA_PATH)
    return ec.draw_historic_figure(df)


def validate_input(
    company_name: str,
    avg_electric_bill: float,
    avg_gas_bill: float,
    avg_transport_cost: float,
    monthly_waste_generated: float,
    recycled_waste_percent: float,
    annual_travel_kms: float,
    fuel_efficiency: float,
) -> None:
    """
    Comprehensive validation for input parameters with non-zero requirements
    """
    # Company Name Validation
    if not company_name or company_name.isspace():
        raise gr.Error("Company name cannot be empty or just whitespace!")

    if len(company_name) > 100:
        raise gr.Error("Company name is too long (maximum 100 characters)!")

    # Non-Zero Input Validation
    non_zero_fields = [
        ("Electricity Bill", avg_electric_bill),
        ("Gas Bill", avg_gas_bill),
        ("Transport Cost", avg_transport_cost),
        ("Monthly Waste", monthly_waste_generated),
        ("Annual Travel Distance", annual_travel_kms),
        ("Fuel Efficiency", fuel_efficiency),
    ]

    for name, value in non_zero_fields:
        try:
            float_val = float(value)
        except (TypeError, ValueError):
            raise gr.Error(f"{name} must be a valid number!")

        if float_val <= 0:
            raise gr.Error(f"{name} must be a positive number greater than zero!")

        # Additional realistic range checks
        if name == "Electricity Bill" and float_val > 10000:
            raise gr.Error(
                "Electricity bill seems unrealistically high. Please check the amount!"
            )

        if name == "Monthly Waste" and float_val > 1000:
            raise gr.Error(
                "Monthly waste generation seems extremely high. Please verify!"
            )
        
        if name == "Fuel Efficiency" :
            if float_val < 5:
                raise gr.Error(
                    "Fuel efficiency seems unrealistically low. Please verify!"
                )
            if float_val > 15:
                raise gr.Error(
                    "Fuel efficiency is very high. Please verify!"
                )

    # Percentage-specific validation
    try:
        recycled_percent = float(recycled_waste_percent)
    except (TypeError, ValueError):
        raise gr.Error("Recycled waste percentage must be a valid number!")

    if recycled_percent < 0 or recycled_percent > 100:
        raise gr.Error("Recycled waste percentage must be between 1 and 100!")


def compute(
    company_name: str,
    avg_electric_bill: float,
    avg_gas_bill: float,
    avg_transport_cost: float,
    monthly_waste_generated: float,
    recycled_waste_percent: float,
    annual_travel_kms: float,
    fuel_efficiency: float,
) -> tuple[str, gr.Button]:
    """
    Compute carbon footprint with comprehensive input validation
    Returns:
        result (tuple)
        of summary HTML (str)
        and download_report button (Button)
    """
    # Validate inputs first
    validate_input(
        company_name,
        avg_electric_bill,
        avg_gas_bill,
        avg_transport_cost,
        monthly_waste_generated,
        recycled_waste_percent,
        annual_travel_kms,
        fuel_efficiency,
    )

    # Proceed with calculation if validation passes
    df = ec.make_dataframe(
        company_name=company_name,
        avg_electric_bill=avg_electric_bill,
        avg_gas_bill=avg_gas_bill,
        avg_transport_bill=avg_transport_cost,
        monthly_waste_generated=monthly_waste_generated,
        recycled_waste_percent=recycled_waste_percent,
        annual_travel_kms=annual_travel_kms,
        fuel_efficiency=fuel_efficiency,
    )

    try:
        df_dump = ec.dataframe_to_dict(df=df)
        with open(DATA_PATH, mode="a") as f:
            w = DictWriter(f, fieldnames=df_dump.keys())
            if not os_path.exists(DATA_PATH):
                w.writeheader()
            w.writerow(df_dump)
            print("Saving is successful")
    except Exception as e:
        print(e)

    plot = ec.draw_report_figure(df)

    # Convert plot to base64 image
    img_data = base64.b64encode(
        plot.to_image(width=1400, height=800, format="png")
    ).decode("utf-8")

    # convert plot to pdf for downloading report
    file_path = f"./reports/{company_name.lower().replace(' ', '_')[:10]}_report.pdf"
    plot.write_image(file_path, width=1400, height=800)

    # Generate a summary HTML with embedded image
    summary = f"""
    <div style="max-width: 1400px; margin: 0 auto; font-family: Arial, sans-serif;">
        <h3 style="color: #ffffff;"> Carbon Footprint Summary for {company_name} </h3>
        <ul style="color: #666;">
            <li>🏭 <strong>Total Carbon Impact</strong>: Calculated based on your inputs</li>
            <li>πŸ’‘ <strong>Energy Consumption</strong>: €{avg_electric_bill + avg_gas_bill:.2f}</li>
            <li>πŸš— <strong>Transportation Emissions</strong>: {annual_travel_kms} km</li>
            <li>πŸ—‘οΈ <strong>Waste Management</strong>: {monthly_waste_generated} kg (Recycled: {recycled_waste_percent}%)</li>
        </ul>
        <img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Carbon Footprint Report"/>
    </div>
    """
    download_button = gr.DownloadButton(
        "Download Report", variant="secondary", visible=True, value=file_path
    )
    return summary, download_button


def create_carbon_footprint_app() -> gr.Blocks:
    with gr.Blocks(theme="soft") as demo:
        with gr.Tab("Calculator πŸ“±"):
            gr.Markdown("# 🌍 Carbon Footprint Calculator")

            # Hidden image download button
            download_button = gr.File(
                label="Download Carbon Footprint Report", type="binary", visible=False
            )

            with gr.Column():
                with gr.Column(scale=2):
                    with gr.Column(variant="compact"):
                        company_name = gr.Textbox(
                            label="Company Name",
                            placeholder="Enter your company name",
                            info="Required: Full legal company name",
                        )
                    with gr.Row():
                        with gr.Column(variant="panel"):
                            avg_electric_bill = gr.Number(
                                value=1.0,
                                label="Average Electricity Bill (€)",
                                minimum=0.01,
                                info="Monthly electricity expenses",
                            )
                            avg_gas_bill = gr.Number(
                                value=1.0,
                                label="Average Gas Bill (€)",
                                minimum=0.01,
                                info="Monthly natural gas expenses",
                            )
                            avg_transport_cost = gr.Number(
                                value=1.0,
                                label="Average Transport Cost (€)",
                                info="Monthly Fuel bill for transport",
                            )

                        with gr.Row(variant="panel"):
                            with gr.Column(variant="compact"):
                                annual_travel_kms = gr.Number(
                                    value=1.0,
                                    label="Annual Business Travel (km)",
                                    minimum=0.01,
                                    info="Total kilometers traveled by employees",
                                )
                                fuel_efficiency = gr.Number(
                                    value=1.0,
                                    label="Vehicle Fuel Efficiency (L/100 km)",
                                    minimum=0.01,
                                    info="Average fleet fuel consumption",
                                )

                            with gr.Column(variant="compact"):
                                monthly_waste_generated = gr.Number(
                                    value=1.0,
                                    label="Monthly Waste Generated (kg)",
                                    minimum=0.01,
                                    info="Total waste produced monthly",
                                )
                                recycled_waste_percent = gr.Number(
                                    value=0.0,
                                    label="Recycled Waste (%)",
                                    minimum=0.0,
                                    maximum=100.0,
                                    info="Percentage of waste recycled",
                                )

                with gr.Column(scale=2):
                    output_plot = gr.HTML(label="Carbon Footprint Report")
                    # Create a row for buttons
                    with gr.Row():
                        submit_button = gr.Button("Generate Report", variant="primary")
                        download_button = gr.DownloadButton(
                            "Download Report", variant="secondary", visible=False
                        )

            submit_button.click(
                fn=compute,
                inputs=[
                    company_name,
                    avg_electric_bill,
                    avg_gas_bill,
                    avg_transport_cost,
                    monthly_waste_generated,
                    recycled_waste_percent,
                    annual_travel_kms,
                    fuel_efficiency,
                ],
                outputs=[output_plot, download_button],
            )

        with gr.Tab("History πŸ“Š") as historic_tab:
            gr.Markdown("# Historic Company Data")

            plot = gr.Plot(value=compute_history(), label="Historic Data")
            refresh = gr.Button("Refresh", variant="secondary")
            refresh.click(
                fn=compute_history,
                outputs=[plot],
            )
            # auto-reload
            historic_tab.select(
                fn=compute_history,
                outputs=[plot],
            )

    return demo


if __name__ == "__main__":
    create_carbon_footprint_app().launch()