File size: 7,548 Bytes
4eafb07
 
 
11b9056
4eafb07
 
11b9056
facb61e
11b9056
4eafb07
11b9056
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9056
 
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9056
 
4eafb07
 
11b9056
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eafb07
 
 
 
11b9056
4eafb07
 
11b9056
 
4eafb07
 
11b9056
4eafb07
11b9056
4eafb07
 
 
 
 
 
 
11b9056
4eafb07
 
 
 
11b9056
 
 
 
 
4eafb07
11b9056
 
4eafb07
 
11b9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eafb07
11b9056
4eafb07
11b9056
4eafb07
11b9056
 
4eafb07
 
11b9056
4eafb07
11b9056
 
 
 
 
 
 
 
 
 
 
 
4eafb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from pandas import DataFrame

from plotly.subplots import make_subplots
from plotly.graph_objects import Figure, Pie, Bar, Scatter, Scatterpolar


def draw_report_figure(
    df: DataFrame, threshold: tuple[float] = [15_000, 5_000, 15_000]
) -> Figure:
    figure_specs = [
        [{"type": "xy"}, {"type": "domain"}],
        [{"type": "xy"}, {"type": "xy"}],
    ]

    fig = make_subplots(
        rows=2,
        cols=2,
        specs=figure_specs,
        subplot_titles=(
            "Carbon Emission by Category",
            "Emission Distribution",
        ),
    )

    # Pie chart settings
    pie_pull = [0.15 if x == min(df["Value"]) else 0.0 for x in df["Value"]]
    fig.add_trace(
        Pie(
            values=df["Value"],
            labels=df["Category"],
            hole=0.3,
            pull=pie_pull,
            name="Emission Distribution",
            marker={"colors": ["#6DA34D", "#81C3D7", "#FFC857"]},
        ),
        row=1,
        col=2,
    )

    # Bar chart for emissions by category
    fig.add_trace(
        Bar(
            x=df["Category"],
            y=df["Value"],
            name="Carbon Emission (kgCO2)",
            marker_color=["#6DA34D", "#81C3D7", "#FFC857"],
        ),
        row=1,
        col=1,
    )

    # Annotation for highest emission
    fig.add_annotation(
        x=df["Category"][df["Value"].idxmax()],
        y=df["Value"].max(),
        text="Highest Emission",
        showarrow=True,
        arrowhead=1,
        ax=0,
        ay=-40,
        row=1,
        col=1,
    )

    # Update layout for axes and overall layout
    fig.update_layout(
        title_text=f"Carbon Footprint of {df['Name'][0]}",
        plot_bgcolor="white",
        legend_title_text="Breakdown",
        xaxis_title="Emission Category",
        yaxis_title="Carbon Emission (kgCO2)",
        yaxis=dict(
            linecolor="black",
            showline=True,
            ticks="outside",
            mirror=True,
            gridcolor="lightgrey",
        ),
        legend=dict(
            x=1,
            y=0,
            xanchor="right",
            yanchor="bottom",
            orientation="h",
        ),
    )

    fig.update_xaxes(
        linecolor="black",
        ticks="outside",
        showline=True,
        mirror=True,
    )
    fig.update_yaxes(
        linecolor="black",
        showline=True,
        ticks="outside",
        mirror=True,
        gridcolor="lightgrey",
    )

    # Add a single general recommendation text box
    e, w, b = df["Value"]
    threshold_values = [e >= threshold[0], w >= threshold[1], b >= threshold[2]]
    recommendations = []
    texts = [
        "- Reduce energy usage by adopting energy-efficient practices.\n",
        "- Minimize waste by recycling and using sustainable materials.\n",
        "- Limit business travel and opt for virtual meetings where possible."
    ]
    if any(threshold_values):
        fig.add_annotation(
            text=("Recommendations to reduce carbon footprint:\n"),
            xref="paper",
            yref="paper",
            x=0,
            y=0.2,  # Positioning inside the plot area, just below center
            showarrow=False,
            font=dict(size=12),
            align="center",
            bordercolor="black",
            borderwidth=1,
            borderpad=10,
            bgcolor="lightyellow",
        )
        if threshold_values[0]:
            recommendations.append(texts[0]) 
        if threshold_values[1]:
            recommendations.append(texts[1])
        if threshold_values[2]:
            recommendations.append(texts[2]) 

    for i, text in enumerate(recommendations):
        fig.add_annotation(
            text=(text),
            xref="paper",
            yref="paper",
            x=0,
            y=(i + 1) * 0.05,  # Positioning inside the plot area, just below center
            showarrow=False,
            font=dict(size=12),
            align="center",
            bordercolor="black",
            borderwidth=1,
            borderpad=10,
            bgcolor="lightyellow",
        )

    return fig


def draw_historic_figure(df: DataFrame) -> Figure:
    # Create subplots with 2 rows and 1 column
    fig = make_subplots(
        rows=2,
        cols=1,
        specs=[[{"type": "xy"}], [{"type": "polar"}]],
        subplot_titles=(
            "Total Carbon Footprint by Company",
            "Company Metrics Radar Chart",
        ),
        row_heights=[0.6, 0.4],
    )

    # Calculate each company's total carbon footprint as the sum of the three metrics
    df["Carbon Footprint"] = (
        df["Energy Usage"] + df["Waste Generated"] + df["Business Travel"]
    )

    # Add gradient-filled area trace for the Carbon Footprint
    fig.add_trace(
        Scatter(
            x=df["Name"],
            y=df["Carbon Footprint"],
            mode="lines",
            fill="tozeroy",
            line=dict(color="blue"),
            fillcolor="rgba(31, 119, 180, 0.5)",  # Gradient fill for blue
            name="Carbon Footprint",
        ),
        row=1,
        col=1,
    )

    # Prepare data for radar chart (normalizing values for better comparability)
    categories = ["Energy Usage", "Waste Generated", "Business Travel"]
    for _, company in df.iterrows():
        fig.add_trace(
            Scatterpolar(
                r=[
                    company["Energy Usage"],
                    company["Waste Generated"],
                    company["Business Travel"],
                    company["Energy Usage"],  # Closing the loop
                ],
                theta=categories + [categories[0]],  # Circular radar plot
                fill="toself",
                name=company["Name"],
            ),
            row=2,
            col=1,
        )

    # Update layout for the figure
    fig.update_layout(
        title="Company Metrics Visualization",
        template="plotly_white",
        height=800,
        width=1000,
        showlegend=True,
        legend=dict(x=1.05, y=1),  # Adjust legend position
    )

    # Update x and y-axis titles for the first plot
    fig.update_xaxes(title_text="Company", row=1, col=1)
    fig.update_yaxes(title_text="Carbon Footprint (total)", row=1, col=1)

    # Customize polar (radar) chart layout
    fig.update_polars(
        radialaxis=dict(
            visible=True,
            range=[
                df[categories].values.min(),
                df[categories].values.max(),
            ],
        )
    )

    return fig


def make_dataframe(
    company_name: str,
    avg_electric_bill: float,
    avg_gas_bill: float,
    avg_transport_bill: float,
    monthly_waste_generated: float,
    recycled_waste_percent: float,
    annual_travel_kms: float,
    fuel_efficiency: float,
) -> DataFrame:
    energy_usage = (
        (avg_electric_bill * 12 * 5e-4)
        + (avg_gas_bill * 12 * 5.3e-3)
        + (avg_transport_bill * 12 * 2.32)
    )
    waste_generated = monthly_waste_generated * 12 * 0.57 - recycled_waste_percent
    business_travel = annual_travel_kms * 1 / fuel_efficiency * 2.31

    return DataFrame(
        {
            "Name": company_name,
            "Category": ["Energy Usage", "Waste Generated", "Business Travel"],
            "Value": [energy_usage, waste_generated, business_travel],
        }
    )


def dataframe_to_dict(df: DataFrame) -> dict:
    return {
        "Name": df["Name"][0],
        "Energy Usage": df["Value"][0],
        "Waste Generated": df["Value"][1],
        "Business Travel": df["Value"][2],
    }