Update main.py
Browse files
main.py
CHANGED
@@ -1,276 +1,84 @@
|
|
1 |
-
from enkacard import encbanner
|
2 |
-
import asyncio
|
3 |
import os
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
from
|
9 |
-
import
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# result = asyncio.run(card())
|
28 |
-
|
29 |
-
# print(result)
|
30 |
-
|
31 |
-
# data_dir = "/tmp/data"
|
32 |
-
# if not os.path.exists(data_dir):
|
33 |
-
# os.makedirs(data_dir)
|
34 |
-
# data_dir = "/tmp/langs"
|
35 |
-
# if not os.path.exists(data_dir):
|
36 |
-
# os.makedirs(data_dir)
|
37 |
-
|
38 |
-
# async def main():
|
39 |
-
# async with client:
|
40 |
-
# await client.update_assets(lang = ["EN", "CHT"], path="/tmp")
|
41 |
-
|
42 |
-
# asyncio.run(main())
|
43 |
-
|
44 |
-
app = FastAPI()
|
45 |
-
# app = FastAPI(lifespan=lifespan)
|
46 |
-
async def card(id, designtype):
|
47 |
-
async with encbanner.ENC(uid = str(id)) as encard:
|
48 |
-
return await encard.creat(template = (2 if str(designtype) == "2" else 1))
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
try:
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# os.makedirs(data_dir)
|
86 |
-
# asyncio.run(update_genshin())
|
87 |
-
# return 'Update smth ig!!'
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
def upload_image(data):
|
92 |
-
print(data)
|
93 |
-
url = "https://fighter-programmer-uploader.hf.space/upload"
|
94 |
-
files = {'file': ('file', data, "image/png")}
|
95 |
-
response = requests.post(url, files=files)
|
96 |
-
|
97 |
-
if response.status_code != 200:
|
98 |
-
raise Exception(f"HTTP Error: {response.status_code}")
|
99 |
-
|
100 |
-
try:
|
101 |
-
body = response.json()
|
102 |
-
if body["url"]:
|
103 |
-
return body["url"]
|
104 |
-
else:
|
105 |
-
raise Exception(f"Telegraph error: {body.get('error', 'Unknown error')}")
|
106 |
-
except (ValueError, KeyError, IndexError) as e:
|
107 |
-
raise Exception(f"Failed to parse response: {str(e)}")
|
108 |
-
def process_image(dt):
|
109 |
-
with BytesIO() as byte_io:
|
110 |
-
dt.card.save(byte_io, "PNG")
|
111 |
-
byte_io.seek(0)
|
112 |
-
image_url = upload_image(byte_io)
|
113 |
|
114 |
return {
|
115 |
-
"
|
116 |
-
"
|
117 |
}
|
118 |
-
|
119 |
-
def process_images(result):
|
120 |
-
characters = []
|
121 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
122 |
-
# Execute image uploads in parallel
|
123 |
-
futures = [executor.submit(process_image, dt) for dt in result.card]
|
124 |
-
|
125 |
-
for future in concurrent.futures.as_completed(futures):
|
126 |
-
try:
|
127 |
-
characters.append(future.result())
|
128 |
-
except Exception as e:
|
129 |
-
print(f"Error processing image: {e}")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
# if not os.path.exists(data_dir):
|
136 |
-
# os.makedirs(data_dir)
|
137 |
-
|
138 |
-
# data_dir = "/tmp/langs"
|
139 |
-
|
140 |
-
# if not os.path.exists(data_dir):
|
141 |
-
# os.makedirs(data_dir)
|
142 |
-
# asyncio.run(update_genshin())
|
143 |
-
uvicorn.run("main:app", host="0.0.0.0", port=7860, workers=8, timeout_keep_alive=60000)
|
144 |
-
# import enkacard
|
145 |
-
# import enkacard.encbanner
|
146 |
-
# import enkanetwork
|
147 |
-
# import asyncio
|
148 |
-
# import requests
|
149 |
-
# from io import BytesIO
|
150 |
-
# from enkanetwork import EnkaNetworkAPI
|
151 |
-
# import os
|
152 |
-
# from contextlib import asynccontextmanager
|
153 |
-
|
154 |
-
# from fastapi import FastAPI
|
155 |
-
|
156 |
-
# from fastapi.responses import (
|
157 |
-
# JSONResponse,
|
158 |
-
# )
|
159 |
-
# from enkacard import enkatools
|
160 |
-
|
161 |
-
# import uvicorn
|
162 |
-
|
163 |
-
# enka_update = EnkaNetworkAPI()
|
164 |
-
|
165 |
-
|
166 |
-
# async def update_genshin():
|
167 |
-
# try:
|
168 |
-
# async with enka_update:
|
169 |
-
# await enka_update.update_assets(path="/tmp", lang=["EN"])
|
170 |
-
|
171 |
-
|
172 |
-
# # lang=["EN"],
|
173 |
-
# print("Finished update")
|
174 |
-
# except Exception as e:
|
175 |
-
# print(f"Update failed: {e}")
|
176 |
-
|
177 |
-
# async def card(id, designtype):
|
178 |
-
# async with enkacard.encbanner.ENC(uid = str(id)) as encard:
|
179 |
-
# return await encard.creat(template = (2 if str(designtype) == "2" else 1))
|
180 |
-
|
181 |
-
# @asynccontextmanager
|
182 |
-
# async def lifespan(app: FastAPI):
|
183 |
-
# data_dir = "/tmp/data"
|
184 |
-
|
185 |
-
# if not os.path.exists(data_dir):
|
186 |
-
# os.makedirs(data_dir)
|
187 |
-
|
188 |
-
# data_dir = "/tmp/langs"
|
189 |
-
|
190 |
-
# if not os.path.exists(data_dir):
|
191 |
-
# os.makedirs(data_dir)
|
192 |
-
# await update_genshin()
|
193 |
-
# yield
|
194 |
-
# print("Goodbye")
|
195 |
-
|
196 |
-
# app = FastAPI()
|
197 |
-
# # app = FastAPI(lifespan=lifespan)
|
198 |
-
|
199 |
-
# @app.get("/{id}") # Correct route definition without prefix
|
200 |
-
# async def characters(id: int, design: str = "1"): # Use async and await
|
201 |
-
# try:
|
202 |
-
# characters = []
|
203 |
-
# result = await card(id, design) # Use await instead of asyncio.run()
|
204 |
-
|
205 |
-
# for dt in result.card:
|
206 |
-
# with BytesIO() as byte_io:
|
207 |
-
# dt.card.save(byte_io, "PNG")
|
208 |
-
# byte_io.seek(0)
|
209 |
-
# image_url = upload_image(byte_io)
|
210 |
-
|
211 |
-
# characters.append({
|
212 |
-
# "name": dt.name,
|
213 |
-
# "url": image_url
|
214 |
-
# })
|
215 |
-
|
216 |
-
# # Return valid JSON response using FastAPI's JSONResponse
|
217 |
-
# return JSONResponse(content={'response': characters})
|
218 |
-
|
219 |
-
# except enkanetwork.exception.VaildateUIDError:
|
220 |
-
# return JSONResponse(content={'error': 'Invalid UID. Please check your UID.'}, status_code=400)
|
221 |
-
|
222 |
-
# except enkacard.enc_error.ENCardError:
|
223 |
-
# return JSONResponse(content={'error': 'Enable display of the showcase in the game or add characters there.'}, status_code=400)
|
224 |
-
|
225 |
-
# except Exception as e:
|
226 |
-
# return JSONResponse(content={'error': 'UNKNOWN ERR: ' + str(e)}, status_code=500)
|
227 |
-
|
228 |
-
# @app.get("/")
|
229 |
-
# def hello_world():
|
230 |
-
# return 'AMERICA YA HALLO!!'
|
231 |
-
|
232 |
-
# # @app.route("/update_char")
|
233 |
-
# # def upload():
|
234 |
-
# # data_dir = "/tmp/data"
|
235 |
-
|
236 |
-
# # if not os.path.exists(data_dir):
|
237 |
-
# # os.makedirs(data_dir)
|
238 |
-
|
239 |
-
# # data_dir = "/tmp/langs"
|
240 |
-
|
241 |
-
# # if not os.path.exists(data_dir):
|
242 |
-
# # os.makedirs(data_dir)
|
243 |
-
# # asyncio.run(update_genshin())
|
244 |
-
# # return 'Update smth ig!!'
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
# def upload_image(data):
|
249 |
-
# url = "https://telegra.ph/upload"
|
250 |
-
# files = {'file': ('file', data, "image/png")}
|
251 |
-
# response = requests.post(url, files=files)
|
252 |
-
|
253 |
-
# if response.status_code != 200:
|
254 |
-
# raise Exception(f"HTTP Error: {response.status_code}")
|
255 |
-
|
256 |
-
# try:
|
257 |
-
# body = response.json()
|
258 |
-
# if isinstance(body, list) and 'src' in body[0]:
|
259 |
-
# return "https://telegra.ph" + body[0]['src']
|
260 |
-
# else:
|
261 |
-
# raise Exception(f"Telegraph error: {body.get('error', 'Unknown error')}")
|
262 |
-
# except (ValueError, KeyError, IndexError) as e:
|
263 |
-
# raise Exception(f"Failed to parse response: {str(e)}")
|
264 |
-
|
265 |
-
# if __name__ == "__main__":
|
266 |
-
# data_dir = "/tmp/data"
|
267 |
-
|
268 |
-
# if not os.path.exists(data_dir):
|
269 |
-
# os.makedirs(data_dir)
|
270 |
|
271 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
# uvicorn.run("main:app", host="0.0.0.0", port=7860, workers=8, timeout_keep_alive=600)
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
+
import tempfile
|
4 |
+
import httpx
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from fastapi import FastAPI, Query, HTTPException
|
8 |
+
from transformers import AutoModelForImageClassification, ViTImageProcessor
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
# Initialize the model and processor globally to avoid reloading for each request
|
12 |
+
model = AutoModelForImageClassification.from_pretrained("Falconsai/nsfw_image_detection")
|
13 |
+
processor = ViTImageProcessor.from_pretrained('Falconsai/nsfw_image_detection')
|
14 |
+
|
15 |
+
app = FastAPI(title="NSFW Image Detection API")
|
16 |
+
|
17 |
+
@app.get("/detect")
|
18 |
+
async def detect_nsfw(
|
19 |
+
url: str = Query(..., description="URL of the image to analyze"),
|
20 |
+
timeout: Optional[int] = Query(default=10, description="Timeout for downloading image in seconds")
|
21 |
+
):
|
22 |
+
"""
|
23 |
+
Detect NSFW content in an image from a given URL.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
- Saves the image to a temporary file
|
26 |
+
- Processes the image using a pre-trained NSFW detection model
|
27 |
+
- Returns the highest confidence prediction
|
28 |
+
"""
|
29 |
try:
|
30 |
+
# Get the system's temporary directory
|
31 |
+
temp_dir = tempfile.gettempdir()
|
32 |
+
temp_filename = os.path.join(temp_dir, f"{uuid.uuid4()}.jpg")
|
33 |
+
|
34 |
+
# Download the image
|
35 |
+
async with httpx.AsyncClient() as client:
|
36 |
+
response = await client.get(url, timeout=timeout)
|
37 |
+
response.raise_for_status()
|
38 |
+
|
39 |
+
# Save the image
|
40 |
+
with open(temp_filename, 'wb') as f:
|
41 |
+
f.write(response.content)
|
42 |
+
|
43 |
+
# Open and process the image
|
44 |
+
img = Image.open(temp_filename)
|
45 |
+
|
46 |
+
# Perform inference
|
47 |
+
with torch.no_grad():
|
48 |
+
inputs = processor(images=img, return_tensors="pt")
|
49 |
+
outputs = model(**inputs)
|
50 |
+
logits = outputs.logits
|
51 |
+
|
52 |
+
# Calculate softmax probabilities
|
53 |
+
confidences = torch.softmax(logits, dim=-1)
|
54 |
+
|
55 |
+
# Find the label with the highest confidence
|
56 |
+
max_confidence_id = confidences[0].argmax().item()
|
57 |
+
max_label = model.config.id2label[max_confidence_id]
|
58 |
+
max_confidence = confidences[0][max_confidence_id].item()
|
59 |
+
|
60 |
+
# Clean up the temporary file
|
61 |
+
os.unlink(temp_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
return {
|
64 |
+
"label": max_label,
|
65 |
+
"confidence": max_confidence
|
66 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
except httpx.RequestError as e:
|
69 |
+
raise HTTPException(status_code=400, detail=f"Error downloading image: {str(e)}")
|
70 |
+
except Exception as e:
|
71 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Startup event to warm up the model
|
74 |
+
@app.on_event("startup")
|
75 |
+
async def startup_event():
|
76 |
+
# Perform a dummy inference to warm up the model
|
77 |
+
dummy_img = Image.new('RGB', (224, 224), color='red')
|
78 |
+
with torch.no_grad():
|
79 |
+
inputs = processor(images=dummy_img, return_tensors="pt")
|
80 |
+
model(**inputs)
|
81 |
|
82 |
+
if __name__ == "__main__":
|
83 |
+
import uvicorn
|
84 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|