File size: 9,052 Bytes
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab87461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import json
import os
import random

import albumentations
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset


class DalleTransformerPreprocessor(object):
    def __init__(self,

                 size=256,

                 phase='train',

                 additional_targets=None):

        self.size = size
        self.phase = phase
        # ddc: following dalle to use randomcrop
        self.train_preprocessor = albumentations.Compose([albumentations.RandomCrop(height=size, width=size)],
                                                   additional_targets=additional_targets)
        self.val_preprocessor = albumentations.Compose([albumentations.CenterCrop(height=size, width=size)],
                                                   additional_targets=additional_targets)


    def __call__(self, image, **kargs):
        """

        image: PIL.Image

        """
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image.astype(np.uint8))

        w, h = image.size
        s_min = min(h, w)

        if self.phase == 'train':
            off_h = int(random.uniform(3*(h-s_min)//8, max(3*(h-s_min)//8+1, 5*(h-s_min)//8)))
            off_w = int(random.uniform(3*(w-s_min)//8, max(3*(w-s_min)//8+1, 5*(w-s_min)//8)))

            image = image.crop((off_w, off_h, off_w + s_min, off_h + s_min))

            # resize image
            t_max = min(s_min, round(9/8*self.size))
            t_max = max(t_max, self.size)
            t = int(random.uniform(self.size, t_max+1))
            image = image.resize((t, t))
            image = np.array(image).astype(np.uint8)
            image = self.train_preprocessor(image=image)
        else:
            if w < h:
                w_ = self.size
                h_ = int(h * w_/w)
            else:
                h_ = self.size
                w_ = int(w * h_/h)
            image = image.resize((w_, h_))
            image = np.array(image).astype(np.uint8)
            image = self.val_preprocessor(image=image)
        return image


class CelebA(Dataset):

    """

    This Dataset can be used for:

    - image-only: setting 'conditions' = []

    - image and multi-modal 'conditions': setting conditions as the list of modalities you need



    To toggle between 256 and 512 image resolution, simply change the 'image_folder'

    """

    def __init__(

        self,

        phase='train',

        size=512,

        test_dataset_size=3000,

        conditions=['seg_mask', 'text', 'sketch'],

        image_folder='data/celeba/image/image_512_downsampled_from_hq_1024',

        text_file='data/celeba/text/captions_hq_beard_and_age_2022-08-19.json',

        mask_folder='data/celeba/mask/CelebAMask-HQ-mask-color-palette_32_nearest_downsampled_from_hq_512_one_hot_2d_tensor',

        sketch_folder='data/celeba/sketch/sketch_1x1024_tensor',

    ):
        self.transform = DalleTransformerPreprocessor(size=size, phase=phase)
        self.conditions = conditions

        self.image_folder = image_folder

        # conditions directory
        self.text_file = text_file
        with open(self.text_file, 'r') as f:
            self.text_file_content = json.load(f)
        if 'seg_mask' in self.conditions:
            self.mask_folder = mask_folder
        if 'sketch' in self.conditions:
            self.sketch_folder = sketch_folder

        # list of valid image names & train test split
        self.image_name_list = list(self.text_file_content.keys())

        # train test split
        if phase == 'train':
            self.image_name_list = self.image_name_list[:-test_dataset_size]
        elif phase == 'test':
            self.image_name_list = self.image_name_list[-test_dataset_size:]
        else:
            raise NotImplementedError
        self.num = len(self.image_name_list)

    def __len__(self):
        return self.num

    def __getitem__(self, index):

        # ---------- (1) get image ----------
        image_name = self.image_name_list[index]
        image_path = os.path.join(self.image_folder, image_name)
        image = Image.open(image_path).convert('RGB')
        image = np.array(image).astype(np.uint8)
        image = self.transform(image=image)['image']
        image = image.astype(np.float32)/127.5 - 1.0

        # record into data entry
        if len(self.conditions) == 1:
            data = {
                'image': image,
            }
        else:
            data = {
                'image': image,
                'conditions': {}
            }

        # ---------- (2) get text ----------
        if 'text' in self.conditions:
            text = self.text_file_content[image_name]["Beard_and_Age"].lower()
            # record into data entry
            if len(self.conditions) == 1:
                data['caption'] = text
            else:
                data['conditions']['text'] = text

        # ---------- (3) get mask ----------
        if 'seg_mask' in self.conditions:
            mask_idx = image_name.split('.')[0]
            mask_name = f'{mask_idx}.pt'
            mask_path = os.path.join(self.mask_folder, mask_name)
            mask_one_hot_tensor = torch.load(mask_path)

            # record into data entry
            if len(self.conditions) == 1:
                data['seg_mask'] = mask_one_hot_tensor
            else:
                data['conditions']['seg_mask'] = mask_one_hot_tensor

        # ---------- (4) get sketch ----------
        if 'sketch' in self.conditions:
            sketch_idx = image_name.split('.')[0]
            sketch_name = f'{sketch_idx}.pt'
            sketch_path = os.path.join(self.sketch_folder, sketch_name)
            sketch_one_hot_tensor = torch.load(sketch_path)

            # record into data entry
            if len(self.conditions) == 1:
                data['sketch'] = sketch_one_hot_tensor
            else:
                data['conditions']['sketch'] = sketch_one_hot_tensor
        data["image_name"] = image_name.split('.')[0]
        return data


if __name__ == '__main__':
    # The caption file only has 29999 captions: https://github.com/ziqihuangg/CelebA-Dialog/issues/1
    
    # Testing for `phase`
    train_dataset = CelebA(phase="train")
    test_dataset = CelebA(phase="test")
    assert len(train_dataset)==26999
    assert len(test_dataset)==3000
    
    # Testing for `size`
    size_512 = CelebA(size=512)
    assert size_512[0]['image'].shape == (512, 512, 3)
    assert size_512[0]["conditions"]['seg_mask'].shape == (19, 1024)
    assert size_512[0]["conditions"]['sketch'].shape == (1, 1024)
    size_512 = CelebA(size=256)
    assert size_512[0]['image'].shape == (256, 256, 3)
    assert size_512[0]["conditions"]['seg_mask'].shape == (19, 1024)
    assert size_512[0]["conditions"]['sketch'].shape == (1, 1024)
    
    # Testing for `conditions`
    dataset = CelebA(conditions = ['seg_mask', 'text', 'sketch'])
    image = dataset[0]["image"]
    seg_mask= dataset[0]["conditions"]['seg_mask']
    sketch = dataset[0]["conditions"]['sketch']
    text = dataset[0]["conditions"]['text']
    # show image, seg_mask, sketch in 3x3 grid, and text in title
    fig, ax = plt.subplots(1, 3, figsize=(12, 4))
    
    # Show image
    ax[0].imshow((image + 1) / 2)
    ax[0].set_title('Image')
    ax[0].axis('off')

    # # Show segmentation mask
    seg_mask = torch.argmax(seg_mask, dim=0).reshape(32, 32).numpy().astype(np.uint8)
    # resize to 512x512 using nearest neighbor interpolation
    seg_mask = Image.fromarray(seg_mask).resize((512, 512), Image.NEAREST)
    seg_mask = np.array(seg_mask)
    ax[1].imshow(seg_mask, cmap='tab20')
    ax[1].set_title('Segmentation Mask')
    ax[1].axis('off')
    
    # # # Show sketch
    sketch = sketch.reshape(32, 32).numpy().astype(np.uint8)
    # resize to 512x512 using nearest neighbor interpolation
    sketch = Image.fromarray(sketch).resize((512, 512), Image.NEAREST)
    sketch = np.array(sketch)
    ax[2].imshow(sketch, cmap='gray')
    ax[2].set_title('Sketch')
    ax[2].axis('off')

    # Add title with text
    fig.suptitle(text, fontsize=16)
    plt.tight_layout()
    plt.savefig('celeba_sample.png')

    # save seg_mask with name such as "27000.png, 270001.png, ..., 279999.png" of test dataset to "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/zouxuechao/Collaborative-Diffusion/evaluation/CollDiff/real_mask"
    from tqdm import tqdm
    for data in tqdm(test_dataset):
        mask = torch.argmax(data["conditions"]['seg_mask'], dim=0).reshape(32, 32).numpy().astype(np.uint8)
        mask = Image.fromarray(mask).resize((512, 512), Image.NEAREST)
        mask.save(f"/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/zouxuechao/Collaborative-Diffusion/evaluation/CollDiff/real_mask/{data['image_name']}.png")