File size: 4,935 Bytes
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os

import albumentations
import numpy as np
from PIL import Image
from torch.utils.data import Dataset


class HRCWHU(Dataset):
    METAINFO = dict(
        classes=('clear sky', 'cloud'),
        palette=((128, 192, 128), (255, 255, 255)),
        img_size=(3, 256, 256),  # C, H, W
        ann_size=(256, 256),  # C, H, W
        train_size=120,
        test_size=30,
    )

    def __init__(self, root, phase, all_transform: albumentations.Compose = None,

                 img_transform: albumentations.Compose = None,

                 ann_transform: albumentations.Compose = None, seed: int = 42):
        self.root = root
        self.phase = phase
        self.all_transform = all_transform
        self.img_transform = img_transform
        self.ann_transform = ann_transform
        self.seed = seed
        self.data = self.load_data()


    def load_data(self):
        data_list = []
        split = 'train' if self.phase == 'train' else 'test'
        split_file = os.path.join(self.root, f'{split}.txt')
        with open(split_file, 'r') as f:
            for line in f:
                image_file = line.strip()
                img_path = os.path.join(self.root, 'img_dir', split, image_file)
                ann_path = os.path.join(self.root, 'ann_dir', split, image_file)
                lac_type = image_file.split('_')[0]
                data_list.append((img_path, ann_path, lac_type))
        return data_list

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        img_path, ann_path, lac_type = self.data[idx]
        img = Image.open(img_path)
        ann = Image.open(ann_path)

        img = np.array(img)
        ann = np.array(ann)

        if self.all_transform:
            albumention = self.all_transform(image=img, mask=ann)
            img = albumention['image']
            ann = albumention['mask']

        if self.img_transform:
            img = self.img_transform(image=img)['image']

        if self.ann_transform:
            ann = self.ann_transform(image=img)['image']

        # if self.img_transform is not None:
        #     img = self.img_transform(img)
        # if self.ann_transform is not None:
        #     ann = self.ann_transform(ann)
        # if self.all_transform is not None:
        #     # 对img和ann实现相同的随机变换操作
        #     # seed_everything(self.seed, workers=True)
        #     # random.seed(self.seed)
        #     # img= self.all_transform(img)
        #     # seed_everything(self.seed, workers=True)
        #     # random.seed(self.seed)
        #     # ann= self.all_transform(ann)
        #     merge = torch.cat((img, ann), dim=0)
        #     merge = self.all_transform(merge)
        #     img = merge[:-1]
        #     ann = merge[-1]

        return {
            'img': img,
            'ann': np.int64(ann),
            'img_path': img_path,
            'ann_path': ann_path,
            'lac_type': lac_type,
        }


if __name__ == '__main__':
    import torchvision.transforms as transforms
    import torch

    # all_transform = transforms.Compose([
    #     transforms.RandomCrop((256, 256)),
    # ])
    all_transform = transforms.RandomCrop((256, 256))

    # img_transform = transforms.Compose([
    #     transforms.ToTensor(),
    # ])

    img_transform = transforms.ToTensor()

    # ann_transform = transforms.Compose([
    #     transforms.PILToTensor(),
    # ])
    ann_transform = transforms.PILToTensor()

    train_dataset = HRCWHU(root='data/hrcwhu', phase='train', all_transform=all_transform, img_transform=img_transform,
                           ann_transform=ann_transform)
    test_dataset = HRCWHU(root='data/hrcwhu', phase='test', all_transform=all_transform, img_transform=img_transform,
                          ann_transform=ann_transform)

    assert len(train_dataset) == train_dataset.METAINFO['train_size']
    assert len(test_dataset) == test_dataset.METAINFO['test_size']

    train_sample = train_dataset[0]
    test_sample = test_dataset[0]

    assert train_sample['img'].shape == test_sample['img'].shape == train_dataset.METAINFO['img_size']
    assert train_sample['ann'].shape == test_sample['ann'].shape == train_dataset.METAINFO['ann_size']

    import matplotlib.pyplot as plt

    fig, axs = plt.subplots(1, 2, figsize=(10, 5))
    for train_sample in train_dataset:
        axs[0].imshow(train_sample['img'].permute(1, 2, 0))
        axs[0].set_title('Image')
        axs[1].imshow(torch.tensor(train_dataset.METAINFO['palette'])[train_sample['ann']])
        axs[1].set_title('Annotation')
        plt.suptitle(f'Land Cover Type: {train_sample["lac_type"].capitalize()}', y=0.8)
        plt.tight_layout()
        plt.savefig('HRCWHU_sample.png', bbox_inches="tight")
        # break