File size: 8,421 Bytes
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import Any, Dict, Optional, Tuple

import torch
from lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision.transforms import transforms

from src.data.components.mnist import MNIST


class MNISTDataModule(LightningDataModule):
    """`LightningDataModule` for the MNIST dataset.



    The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples.

    It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a

    fixed-size image. The original black and white images from NIST were size normalized to fit in a 20x20 pixel box

    while preserving their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing

    technique used by the normalization algorithm. the images were centered in a 28x28 image by computing the center of

    mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.



    A `LightningDataModule` implements 7 key methods:



    ```python

        def prepare_data(self):

        # Things to do on 1 GPU/TPU (not on every GPU/TPU in DDP).

        # Download data, pre-process, split, save to disk, etc...



        def setup(self, stage):

        # Things to do on every process in DDP.

        # Load data, set variables, etc...



        def train_dataloader(self):

        # return train dataloader



        def val_dataloader(self):

        # return validation dataloader



        def test_dataloader(self):

        # return test dataloader



        def predict_dataloader(self):

        # return predict dataloader



        def teardown(self, stage):

        # Called on every process in DDP.

        # Clean up after fit or test.

    ```



    This allows you to share a full dataset without explaining how to download,

    split, transform and process the data.



    Read the docs:

        https://lightning.ai/docs/pytorch/latest/data/datamodule.html

    """

    def __init__(

        self,

        data_dir: str = "data/",

        train_val_test_split: Tuple[int, int, int] = (55_000, 5_000, 10_000),

        batch_size: int = 64,

        num_workers: int = 0,

        pin_memory: bool = False,

        persistent_workers: bool = False,

    ) -> None:
        """Initialize a `MNISTDataModule`.



        :param data_dir: The data directory. Defaults to `"data/"`.

        :param train_val_test_split: The train, validation and test split. Defaults to `(55_000, 5_000, 10_000)`.

        :param batch_size: The batch size. Defaults to `64`.

        :param num_workers: The number of workers. Defaults to `0`.

        :param pin_memory: Whether to pin memory. Defaults to `False`.

        :param persistent_workers: Whether to keep workers alive between data loading. Defaults to `False`.

        """
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # data transformations
        self.transforms = transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )

        self.data_train: Optional[Dataset] = None
        self.data_val: Optional[Dataset] = None
        self.data_test: Optional[Dataset] = None

        self.batch_size_per_device = batch_size

    @property
    def num_classes(self) -> int:
        """Get the number of classes.



        :return: The number of MNIST classes (10).

        """
        return 10

    def prepare_data(self) -> None:
        """Download data if needed. Lightning ensures that `self.prepare_data()` is called only

        within a single process on CPU, so you can safely add your downloading logic within. In

        case of multi-node training, the execution of this hook depends upon

        `self.prepare_data_per_node()`.



        Do not use it to assign state (self.x = y).

        """
        MNIST(
            h5_file=f"{self.hparams.data_dir}/mnist.h5",
            transform=self.transforms,
        )

    def setup(self, stage: Optional[str] = None) -> None:
        """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.



        This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and

        `trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after

        `self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to

        `self.setup()` once the data is prepared and available for use.



        :param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.

        """
        # Divide batch size by the number of devices.
        if self.trainer is not None:
            if self.hparams.batch_size % self.trainer.world_size != 0:
                raise RuntimeError(
                    f"Batch size ({self.hparams.batch_size}) is not divisible by the number of devices ({self.trainer.world_size})."
                )
            self.batch_size_per_device = self.hparams.batch_size // self.trainer.world_size

        # load and split datasets only if not loaded already
        if not self.data_train and not self.data_val and not self.data_test:
            dataset = MNIST(
                h5_file=f"{self.hparams.data_dir}/mnist.h5",
                transform=self.transforms,
            )
            self.data_train, self.data_val, self.data_test = random_split(
                dataset=dataset,
                lengths=self.hparams.train_val_test_split,
                generator=torch.Generator().manual_seed(42),
            )

    def train_dataloader(self) -> DataLoader[Any]:
        """Create and return the train dataloader.



        :return: The train dataloader.

        """
        return DataLoader(
            dataset=self.data_train,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            persistent_workers=self.hparams.persistent_workers,
            shuffle=True,
        )

    def val_dataloader(self) -> DataLoader[Any]:
        """Create and return the validation dataloader.



        :return: The validation dataloader.

        """
        return DataLoader(
            dataset=self.data_val,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            persistent_workers=self.hparams.persistent_workers,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader[Any]:
        """Create and return the test dataloader.



        :return: The test dataloader.

        """
        return DataLoader(
            dataset=self.data_test,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            persistent_workers=self.hparams.persistent_workers,
            shuffle=False,
        )

    def teardown(self, stage: Optional[str] = None) -> None:
        """Lightning hook for cleaning up after `trainer.fit()`, `trainer.validate()`,

        `trainer.test()`, and `trainer.predict()`.



        :param stage: The stage being torn down. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.

            Defaults to ``None``.

        """
        pass

    def state_dict(self) -> Dict[Any, Any]:
        """Called when saving a checkpoint. Implement to generate and save the datamodule state.



        :return: A dictionary containing the datamodule state that you want to save.

        """
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        """Called when loading a checkpoint. Implement to reload datamodule state given datamodule

        `state_dict()`.



        :param state_dict: The datamodule state returned by `self.state_dict()`.

        """
        pass


if __name__ == "__main__":
    _ = MNISTDataModule()