Spaces:
Sleeping
Sleeping
File size: 8,521 Bytes
fa7be76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from typing import Any, Dict, Tuple
import torch
from lightning import LightningModule
from torchmetrics import MaxMetric, MeanMetric
from torchmetrics.classification.accuracy import Accuracy
class MNISTLitModule(LightningModule):
"""Example of a `LightningModule` for MNIST classification.
A `LightningModule` implements 8 key methods:
```python
def __init__(self):
# Define initialization code here.
def setup(self, stage):
# Things to setup before each stage, 'fit', 'validate', 'test', 'predict'.
# This hook is called on every process when using DDP.
def training_step(self, batch, batch_idx):
# The complete training step.
def validation_step(self, batch, batch_idx):
# The complete validation step.
def test_step(self, batch, batch_idx):
# The complete test step.
def predict_step(self, batch, batch_idx):
# The complete predict step.
def configure_optimizers(self):
# Define and configure optimizers and LR schedulers.
```
Docs:
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html
"""
def __init__(
self,
net: torch.nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler,
compile: bool,
) -> None:
"""Initialize a `MNISTLitModule`.
:param net: The model to train.
:param optimizer: The optimizer to use for training.
:param scheduler: The learning rate scheduler to use for training.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False, ignore=['net'])
self.net = net
# loss function
self.criterion = torch.nn.CrossEntropyLoss()
# metric objects for calculating and averaging accuracy across batches
self.train_acc = Accuracy(task="multiclass", num_classes=10)
self.val_acc = Accuracy(task="multiclass", num_classes=10)
self.test_acc = Accuracy(task="multiclass", num_classes=10)
# for averaging loss across batches
self.train_loss = MeanMetric()
self.val_loss = MeanMetric()
self.test_loss = MeanMetric()
# for tracking best so far validation accuracy
self.val_acc_best = MaxMetric()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform a forward pass through the model `self.net`.
:param x: A tensor of images.
:return: A tensor of logits.
"""
return self.net(x)
def on_train_start(self) -> None:
"""Lightning hook that is called when training begins."""
# by default lightning executes validation step sanity checks before training starts,
# so it's worth to make sure validation metrics don't store results from these checks
self.val_loss.reset()
self.val_acc.reset()
self.val_acc_best.reset()
def model_step(
self, batch: Tuple[torch.Tensor, torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Perform a single model step on a batch of data.
:param batch: A batch of data (a tuple) containing the input tensor of images and target labels.
:return: A tuple containing (in order):
- A tensor of losses.
- A tensor of predictions.
- A tensor of target labels.
"""
x, y = batch
logits = self.forward(x)
loss = self.criterion(logits, y)
preds = torch.argmax(logits, dim=1)
return loss, preds, y
def training_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> torch.Tensor:
"""Perform a single training step on a batch of data from the training set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
:return: A tensor of losses between model predictions and targets.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.train_loss(loss)
self.train_acc(preds, targets)
self.log("train/loss", self.train_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log("train/acc", self.train_acc, on_step=False, on_epoch=True, prog_bar=True)
# return loss or backpropagation will fail
return loss
def on_train_epoch_end(self) -> None:
"Lightning hook that is called when a training epoch ends."
pass
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> None:
"""Perform a single validation step on a batch of data from the validation set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.val_loss(loss)
self.val_acc(preds, targets)
self.log("val/loss", self.val_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log("val/acc", self.val_acc, on_step=False, on_epoch=True, prog_bar=True)
def on_validation_epoch_end(self) -> None:
"Lightning hook that is called when a validation epoch ends."
acc = self.val_acc.compute() # get current val acc
self.val_acc_best(acc) # update best so far val acc
# log `val_acc_best` as a value through `.compute()` method, instead of as a metric object
# otherwise metric would be reset by lightning after each epoch
self.log("val/acc_best", self.val_acc_best.compute(), sync_dist=True, prog_bar=True)
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> None:
"""Perform a single test step on a batch of data from the test set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.test_loss(loss)
self.test_acc(preds, targets)
self.log("test/loss", self.test_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log("test/acc", self.test_acc, on_step=False, on_epoch=True, prog_bar=True)
def on_test_epoch_end(self) -> None:
"""Lightning hook that is called when a test epoch ends."""
pass
def setup(self, stage: str) -> None:
"""Lightning hook that is called at the beginning of fit (train + validate), validate,
test, or predict.
This is a good hook when you need to build models dynamically or adjust something about
them. This hook is called on every process when using DDP.
:param stage: Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
"""
if self.hparams.compile and stage == "fit":
self.net = torch.compile(self.net)
def configure_optimizers(self) -> Dict[str, Any]:
"""Choose what optimizers and learning-rate schedulers to use in your optimization.
Normally you'd need one. But in the case of GANs or similar you might have multiple.
Examples:
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers
:return: A dict containing the configured optimizers and learning-rate schedulers to be used for training.
"""
optimizer = self.hparams.optimizer(params=self.trainer.model.parameters())
if self.hparams.scheduler is not None:
scheduler = self.hparams.scheduler(optimizer=optimizer)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"monitor": "val/loss",
"interval": "epoch",
"frequency": 1,
},
}
return {"optimizer": optimizer}
if __name__ == "__main__":
_ = MNISTLitModule(None, None, None, None)
|