File size: 7,048 Bytes
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692a8e
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692a8e
 
 
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692a8e
fa7be76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
# @Time    : 2024/8/3 上午10:46
# @Author  : xiaoshun
# @Email   : [email protected]
# @File    : wandb_vis.py
# @Software: PyCharm
import argparse
import os
import shutil
from glob import glob

import albumentations as albu
import numpy as np
import torch
import wandb
from PIL import Image
from albumentations.pytorch.transforms import ToTensorV2
from matplotlib import pyplot as plt
from rich.progress import track
from thop import profile

from src.data.components.hrcwhu import HRCWHU
from src.data.hrcwhu_datamodule import HRCWHUDataModule
from src.models.components.cdnetv1 import CDnetV1
from src.models.components.cdnetv2 import CDnetV2
from src.models.components.dbnet import DBNet
from src.models.components.hrcloudnet import HRCloudNet
from src.models.components.kappamask import KappaMask
from src.models.components.mcdnet import MCDNet
from src.models.components.scnn import SCNN
from src.models.components.unetmobv2 import UNetMobV2


class WandbVis:
    def __init__(self, model_name):
        self.model_name = model_name
        self.device = "cuda:1" if torch.cuda.is_available() else "cpu"
        # self.device = "cpu"
        self.colors = ((255, 255, 255), (128, 192, 128))
        self.num_classes = 2
        self.model = self.load_model()
        self.dataloader = self.load_dataset()
        self.macs, self.params = None, None
        wandb.init(project='model_vis', name=self.model_name)

    def load_weight(self, weight_path: str):
        weight = torch.load(weight_path, map_location=self.device)
        state_dict = {}
        for key, value in weight["state_dict"].items():
            new_key = key[4:]
            state_dict[new_key] = value
        return state_dict

    def load_model_by_model_name(self):
        if self.model_name == 'dbnet':
            return DBNet(img_size=256, in_channels=3, num_classes=2).to(self.device)
        if self.model_name == "cdnetv1":
            return CDnetV1(num_classes=2).to(self.device)
        if self.model_name == "cdnetv2":
            return CDnetV2(num_classes=2).to(self.device)

        if self.model_name == "hrcloud":
            return HRCloudNet(num_classes=2).to(self.device)
        if self.model_name == "mcdnet":
            return MCDNet(in_channels=3, num_classes=2).to(self.device)

        if self.model_name == "scnn":
            return SCNN(num_classes=2).to(self.device)

        if self.model_name == "unetmobv2":
            return UNetMobV2(num_classes=2).to(self.device)

        if self.model_name == "kappamask":
            return KappaMask(num_classes=2, in_channels=3).to(self.device)

        raise ValueError(f"{self.model_name}模型不存在")

    def load_model(self):
        weight_path = glob(f"logs/train/runs/hrcwhu_{self.model_name}/*/checkpoints/*.ckpt")[0]
        model = self.load_model_by_model_name()
        state_dict = self.load_weight(weight_path)
        model.load_state_dict(state_dict)
        model.eval()
        return model

    def load_dataset(self):

        all_transform = albu.Compose(
            [
                albu.Resize(
                    height=HRCWHU.METAINFO["img_size"][1],
                    width=HRCWHU.METAINFO["img_size"][2],
                    always_apply=True
                )
            ]
        )
        img_transform = albu.Compose([
            albu.ToFloat(),
            ToTensorV2()
        ])
        ann_transform = None
        val_pipeline = dict(
            all_transform=all_transform,
            img_transform=img_transform,
            ann_transform=ann_transform,
        )
        dataloader = HRCWHUDataModule(
            root="/home/liujie/liumin/cloudseg/data/hrcwhu",
            train_pipeline=val_pipeline,
            val_pipeline=val_pipeline,
            test_pipeline=val_pipeline,
            batch_size=1,
        )
        dataloader.setup()
        test_dataloader = dataloader.test_dataloader()
        return test_dataloader
        # for data in test_dataloader:
        #     print(data['img'].shape,data['ann'].shape,data['img_path'],data['ann_path'],data['lac_type'])
        #     break
        # torch.Size([1, 3, 256, 256])
        # torch.Size([1, 256, 256])
        # ['/home/liujie/liumin/cloudseg/data/hrcwhu/img_dir/test/barren_30.tif']
        # ['/home/liujie/liumin/cloudseg/data/hrcwhu/ann_dir/test/barren_30.tif']
        # ['barren']

    def give_colors_to_mask(self, mask: np.ndarray):
        """

        赋予mask颜色

        """
        assert len(mask.shape) == 2, "Value Error,mask的形状为(height,width)"
        colors_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype(np.float32)
        for color in range(2):
            segc = (mask == color)
            colors_mask[:, :, 0] += segc * (self.colors[color][0])
            colors_mask[:, :, 1] += segc * (self.colors[color][1])
            colors_mask[:, :, 2] += segc * (self.colors[color][2])
        return colors_mask

    @torch.no_grad
    def pred_mask(self, x: torch.Tensor):
        x = x.to(self.device)
        self.macs, self.params = profile(self.model, inputs=(x,), verbose=False)
        logits = self.model(x)
        if isinstance(logits, tuple):
            logits = logits[0]
        fake_mask = torch.argmax(logits, 1).detach().cpu().squeeze(0).numpy()
        return fake_mask

    def np_pil_np(self, image: np.ndarray, filename="colors_ann"):
        colors_np = self.give_colors_to_mask(image)
        pil_np = Image.fromarray(np.uint8(colors_np))
        return np.array(pil_np)

    def run(self, delete_wadb_log=True):
        # print(len(self.dataloader))
        # 30
        for data in track(self.dataloader):
            img = data["img"]
            ann = data["ann"].squeeze(0).numpy()
            img_path = data["img_path"]
            fake_mask = self.pred_mask(img)

            colors_ann = self.np_pil_np(ann)
            colors_fake = self.np_pil_np(fake_mask, "colors_fake")
            image_name = img_path[0].split(os.path.sep)[-1].split(".")[0]

            plt.subplot(1, 2, 1)
            plt.axis("off")
            plt.title("groud true")
            plt.imshow(colors_ann)

            plt.subplot(1, 2, 2)
            plt.axis("off")
            plt.title("predict mask")
            plt.imshow(colors_fake)
            wandb.log({image_name: wandb.Image(plt)})
        wandb.log({"macs": self.macs, "params": self.params})
        wandb.finish()
        if delete_wadb_log and os.path.exists("wandb"):
            shutil.rmtree("wandb")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="dbnet")
    parser.add_argument("--delete-wadb-log", type=bool, default=True)
    args = parser.parse_args()
    vis = WandbVis(model_name=args.model_name)
    vis.run(delete_wadb_log=args.delete_wadb_log)