Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2024/7/24 上午11:36 | |
# @Author : xiaoshun | |
# @Email : [email protected] | |
# @File : cdnetv1.py | |
# @Software: PyCharm | |
"""Cloud detection Network""" | |
"""Cloud detection Network""" | |
""" | |
This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
from torch.utils import data, model_zoo | |
from torch.autograd import Variable | |
import math | |
import numpy as np | |
affine_par = True | |
from torch.autograd import Function | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change | |
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) | |
for i in self.bn1.parameters(): | |
i.requires_grad = False | |
padding = dilation | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change | |
padding=padding, bias=False, dilation=dilation) | |
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) | |
for i in self.bn2.parameters(): | |
i.requires_grad = False | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par) | |
for i in self.bn3.parameters(): | |
i.requires_grad = False | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Classifier_Module(nn.Module): | |
def __init__(self, dilation_series, padding_series, num_classes): | |
super(Classifier_Module, self).__init__() | |
self.conv2d_list = nn.ModuleList() | |
for dilation, padding in zip(dilation_series, padding_series): | |
self.conv2d_list.append( | |
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True)) | |
for m in self.conv2d_list: | |
m.weight.data.normal_(0, 0.01) | |
def forward(self, x): | |
out = self.conv2d_list[0](x) | |
for i in range(len(self.conv2d_list) - 1): | |
out += self.conv2d_list[i + 1](x) | |
return out | |
class _ConvBNReLU(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, | |
dilation=1, groups=1, norm_layer=nn.BatchNorm2d): | |
super(_ConvBNReLU, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False) | |
self.bn = norm_layer(out_channels) | |
self.relu = nn.ReLU(True) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |
class _ASPPConv(nn.Module): | |
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer): | |
super(_ASPPConv, self).__init__() | |
self.block = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
return self.block(x) | |
class _AsppPooling(nn.Module): | |
def __init__(self, in_channels, out_channels, norm_layer): | |
super(_AsppPooling, self).__init__() | |
self.gap = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
size = x.size()[2:] | |
pool = self.gap(x) | |
out = F.interpolate(pool, size, mode='bilinear', align_corners=True) | |
return out | |
class _ASPP(nn.Module): | |
def __init__(self, in_channels, atrous_rates, norm_layer): | |
super(_ASPP, self).__init__() | |
out_channels = 512 # changed from 256 | |
self.b0 = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
rate1, rate2, rate3 = tuple(atrous_rates) | |
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) | |
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) | |
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) | |
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) | |
# self.project = nn.Sequential( | |
# nn.Conv2d(5 * out_channels, out_channels, 1, bias=False), | |
# norm_layer(out_channels), | |
# nn.ReLU(True), | |
# nn.Dropout(0.5)) | |
self.dropout2d = nn.Dropout2d(0.3) | |
def forward(self, x): | |
feat1 = self.dropout2d(self.b0(x)) | |
feat2 = self.dropout2d(self.b1(x)) | |
feat3 = self.dropout2d(self.b2(x)) | |
feat4 = self.dropout2d(self.b3(x)) | |
feat5 = self.dropout2d(self.b4(x)) | |
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) | |
# x = self.project(x) | |
return x | |
class _FPM(nn.Module): | |
def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d): | |
super(_FPM, self).__init__() | |
self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer) | |
# self.dropout2d = nn.Dropout2d(0.5) | |
def forward(self, x): | |
x = torch.cat((x, self.aspp(x)), dim=1) | |
# x = self.dropout2d(x) # added | |
return x | |
class BR(nn.Module): | |
def __init__(self, num_classes, stride=1, downsample=None): | |
super(BR, self).__init__() | |
self.conv1 = conv3x3(num_classes, num_classes * 16, stride) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(num_classes * 16, num_classes) | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out += residual | |
return out | |
class CDnetV1(nn.Module): | |
def __init__(self, block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True): | |
self.inplanes = 64 | |
self.aux = aux | |
super().__init__() | |
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par) | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, affine=affine_par) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(64, affine=affine_par) | |
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(64, affine=affine_par) | |
for i in self.bn1.parameters(): | |
i.requires_grad = False | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) | |
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes) | |
self.res5_con1x1 = nn.Sequential( | |
nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(512), | |
nn.ReLU(True) | |
) | |
self.fpm1 = _FPM(512, num_classes) | |
self.fpm2 = _FPM(512, num_classes) | |
self.fpm3 = _FPM(256, num_classes) | |
self.br1 = BR(num_classes) | |
self.br2 = BR(num_classes) | |
self.br3 = BR(num_classes) | |
self.br4 = BR(num_classes) | |
self.br5 = BR(num_classes) | |
self.br6 = BR(num_classes) | |
self.br7 = BR(num_classes) | |
self.predict1 = self._predict_layer(512 * 6, num_classes) | |
self.predict2 = self._predict_layer(512 * 6, num_classes) | |
self.predict3 = self._predict_layer(512 * 5 + 256, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, 0.01) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
# for i in m.parameters(): | |
# i.requires_grad = False | |
def _predict_layer(self, in_channels, num_classes): | |
return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(256), | |
nn.ReLU(True), | |
nn.Dropout2d(0.1), | |
nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True)) | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion, affine=affine_par)) | |
for i in downsample._modules['1'].parameters(): | |
i.requires_grad = False | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes, dilation=dilation)) | |
return nn.Sequential(*layers) | |
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes): | |
# return block(dilation_series,padding_series,num_classes) | |
def base_forward(self, x): | |
x = self.relu(self.bn1(self.conv1(x))) | |
size_conv1 = x.size()[2:] | |
x = self.relu(self.bn2(self.conv2(x))) | |
x = self.relu(self.bn3(self.conv3(x))) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
res2 = x | |
x = self.layer2(x) | |
res3 = x | |
x = self.layer3(x) | |
res4 = x | |
x = self.layer4(x) | |
x = self.res5_con1x1(torch.cat([x, res4], dim=1)) | |
return x, res3, res2, size_conv1 | |
def forward(self, x): | |
size = x.size()[2:] | |
score1, score2, score3, size_conv1 = self.base_forward(x) | |
# outputs = list() | |
score1 = self.fpm1(score1) | |
score1 = self.predict1(score1) # 1/8 | |
predict1 = score1 | |
score1 = self.br1(score1) | |
score2 = self.fpm2(score2) | |
score2 = self.predict2(score2) # 1/8 | |
predict2 = score2 | |
# first fusion | |
score2 = self.br2(score2) + score1 | |
score2 = self.br3(score2) | |
score3 = self.fpm3(score3) | |
score3 = self.predict3(score3) # 1/4 | |
predict3 = score3 | |
score3 = self.br4(score3) | |
# second fusion | |
size_score3 = score3.size()[2:] | |
score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True) | |
score3 = self.br5(score3) | |
# upsampling + BR | |
score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True) | |
score3 = self.br6(score3) | |
score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True) | |
score3 = self.br7(score3) | |
# if self.aux: | |
# auxout = self.dsn(mid) | |
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) | |
# #outputs.append(auxout) | |
return score3 | |
# return score3, predict1, predict2, predict3 | |
if __name__ == '__main__': | |
model = CDnetV1(num_classes=21) | |
fake_image = torch.randn(2, 3, 224, 224) | |
outputs = model(fake_image) | |
for out in outputs: | |
print(out.shape) | |
# torch.Size([2, 21, 224, 224]) | |
# torch.Size([2, 21, 29, 29]) | |
# torch.Size([2, 21, 29, 29]) | |
# torch.Size([2, 21, 57, 57]) | |