Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2024/7/24 下午3:41 | |
# @Author : xiaoshun | |
# @Email : [email protected] | |
# @File : cdnetv2.py | |
# @Software: PyCharm | |
"""Cloud detection Network""" | |
""" | |
This is the implementation of CDnetV2 without multi-scale inputs. This implementation uses ResNet by default. | |
""" | |
# nn.GroupNorm | |
import torch | |
from torch import nn | |
# import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
from torch.utils import data, model_zoo | |
from torch.autograd import Variable | |
import math | |
import numpy as np | |
affine_par = True | |
from torch.autograd import Function | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change | |
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) | |
for i in self.bn1.parameters(): | |
i.requires_grad = False | |
padding = dilation | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change | |
padding=padding, bias=False, dilation=dilation) | |
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) | |
for i in self.bn2.parameters(): | |
i.requires_grad = False | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par) | |
for i in self.bn3.parameters(): | |
i.requires_grad = False | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
# self.layerx_1 = Bottleneck_nosample(64, 64, stride=1, dilation=1) | |
# self.layerx_2 = Bottleneck(256, 64, stride=1, dilation=1, downsample=None) | |
# self.layerx_3 = Bottleneck_downsample(256, 64, stride=2, dilation=1) | |
class Res_block_1(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes=64, planes=64, stride=1, dilation=1): | |
super(Res_block_1, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(planes, planes, kernel_size=3, stride=1, | |
padding=1, bias=False, dilation=1), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), | |
nn.GroupNorm(8, planes * 4)) | |
self.relu = nn.ReLU(inplace=True) | |
self.down_sample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * 4, | |
kernel_size=1, stride=1, bias=False), | |
nn.GroupNorm(8, planes * 4)) | |
def forward(self, x): | |
# residual = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
out = self.conv3(out) | |
residual = self.down_sample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Res_block_2(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1): | |
super(Res_block_2, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(planes, planes, kernel_size=3, stride=1, | |
padding=1, bias=False, dilation=1), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), | |
nn.GroupNorm(8, planes * 4)) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
out = self.conv3(out) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Res_block_3(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1): | |
super(Res_block_3, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(planes, planes, kernel_size=3, stride=1, | |
padding=1, bias=False, dilation=1), | |
nn.GroupNorm(8, planes), | |
nn.ReLU(inplace=True)) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), | |
nn.GroupNorm(8, planes * 4)) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * 4, | |
kernel_size=1, stride=stride, bias=False), | |
nn.GroupNorm(8, planes * 4)) | |
def forward(self, x): | |
# residual = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
out = self.conv3(out) | |
# residual = self.downsample(x) | |
out += self.downsample(x) | |
out = self.relu(out) | |
return out | |
class Classifier_Module(nn.Module): | |
def __init__(self, dilation_series, padding_series, num_classes): | |
super(Classifier_Module, self).__init__() | |
self.conv2d_list = nn.ModuleList() | |
for dilation, padding in zip(dilation_series, padding_series): | |
self.conv2d_list.append( | |
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True)) | |
for m in self.conv2d_list: | |
m.weight.data.normal_(0, 0.01) | |
def forward(self, x): | |
out = self.conv2d_list[0](x) | |
for i in range(len(self.conv2d_list) - 1): | |
out += self.conv2d_list[i + 1](x) | |
return out | |
class _ConvBNReLU(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, | |
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d): | |
super(_ConvBNReLU, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False) | |
self.bn = norm_layer(out_channels) | |
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |
class _ASPPConv(nn.Module): | |
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer): | |
super(_ASPPConv, self).__init__() | |
self.block = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
return self.block(x) | |
class _AsppPooling(nn.Module): | |
def __init__(self, in_channels, out_channels, norm_layer): | |
super(_AsppPooling, self).__init__() | |
self.gap = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
size = x.size()[2:] | |
pool = self.gap(x) | |
out = F.interpolate(pool, size, mode='bilinear', align_corners=True) | |
return out | |
class _ASPP(nn.Module): | |
def __init__(self, in_channels, atrous_rates, norm_layer): | |
super(_ASPP, self).__init__() | |
out_channels = 256 | |
self.b0 = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
rate1, rate2, rate3 = tuple(atrous_rates) | |
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) | |
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) | |
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) | |
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) | |
self.project = nn.Sequential( | |
nn.Conv2d(5 * out_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True), | |
nn.Dropout(0.5) | |
) | |
def forward(self, x): | |
feat1 = self.b0(x) | |
feat2 = self.b1(x) | |
feat3 = self.b2(x) | |
feat4 = self.b3(x) | |
feat5 = self.b4(x) | |
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) | |
x = self.project(x) | |
return x | |
class _DeepLabHead(nn.Module): | |
def __init__(self, num_classes, c1_channels=256, norm_layer=nn.BatchNorm2d): | |
super(_DeepLabHead, self).__init__() | |
self.aspp = _ASPP(2048, [12, 24, 36], norm_layer=norm_layer) | |
self.c1_block = _ConvBNReLU(c1_channels, 48, 3, padding=1, norm_layer=norm_layer) | |
self.block = nn.Sequential( | |
_ConvBNReLU(304, 256, 3, padding=1, norm_layer=norm_layer), | |
nn.Dropout(0.5), | |
_ConvBNReLU(256, 256, 3, padding=1, norm_layer=norm_layer), | |
nn.Dropout(0.1), | |
nn.Conv2d(256, num_classes, 1)) | |
def forward(self, x, c1): | |
size = c1.size()[2:] | |
c1 = self.c1_block(c1) | |
x = self.aspp(x) | |
x = F.interpolate(x, size, mode='bilinear', align_corners=True) | |
return self.block(torch.cat([x, c1], dim=1)) | |
class _CARM(nn.Module): | |
def __init__(self, in_planes, ratio=8): | |
super(_CARM, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.max_pool = nn.AdaptiveMaxPool2d(1) | |
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio) | |
self.fc1_2 = nn.Linear(in_planes // ratio, in_planes) | |
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio) | |
self.fc2_2 = nn.Linear(in_planes // ratio, in_planes) | |
self.relu = nn.ReLU(True) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
avg_out = self.avg_pool(x) | |
avg_out = avg_out.view(avg_out.size(0), -1) | |
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out))) | |
max_out = self.max_pool(x) | |
max_out = max_out.view(max_out.size(0), -1) | |
max_out = self.fc2_2(self.relu(self.fc2_1(max_out))) | |
max_out_size = max_out.size()[1] | |
avg_out = torch.reshape(avg_out, (-1, max_out_size, 1, 1)) | |
max_out = torch.reshape(max_out, (-1, max_out_size, 1, 1)) | |
out = self.sigmoid(avg_out + max_out) | |
x = out * x | |
return x | |
class FSFB_CH(nn.Module): | |
def __init__(self, in_planes, num, ratio=8): | |
super(FSFB_CH, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.max_pool = nn.AdaptiveMaxPool2d(1) | |
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio) | |
self.fc1_2 = nn.Linear(in_planes // ratio, num * in_planes) | |
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio) | |
self.fc2_2 = nn.Linear(in_planes // ratio, num * in_planes) | |
self.relu = nn.ReLU(True) | |
self.fc3 = nn.Linear(num * in_planes, 2 * num * in_planes) | |
self.fc4 = nn.Linear(2 * num * in_planes, 2 * num * in_planes) | |
self.fc5 = nn.Linear(2 * num * in_planes, num * in_planes) | |
self.softmax = nn.Softmax(dim=3) | |
def forward(self, x, num): | |
avg_out = self.avg_pool(x) | |
avg_out = avg_out.view(avg_out.size(0), -1) | |
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out))) | |
max_out = self.max_pool(x) | |
max_out = max_out.view(max_out.size(0), -1) | |
max_out = self.fc2_2(self.relu(self.fc2_1(max_out))) | |
out = avg_out + max_out | |
out = self.relu(self.fc3(out)) | |
out = self.relu(self.fc4(out)) | |
out = self.relu(self.fc5(out)) # (N, num*in_planes) | |
out_size = out.size()[1] | |
out = torch.reshape(out, (-1, out_size // num, 1, num)) # (N, in_planes, 1, num ) | |
out = self.softmax(out) | |
channel_scale = torch.chunk(out, num, dim=3) # (N, in_planes, 1, 1 ) | |
return channel_scale | |
class FSFB_SP(nn.Module): | |
def __init__(self, num, norm_layer=nn.BatchNorm2d): | |
super(FSFB_SP, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(2, 2 * num, kernel_size=3, padding=1, bias=False), | |
norm_layer(2 * num), | |
nn.ReLU(True), | |
nn.Conv2d(2 * num, 4 * num, kernel_size=3, padding=1, bias=False), | |
norm_layer(4 * num), | |
nn.ReLU(True), | |
nn.Conv2d(4 * num, 4 * num, kernel_size=3, padding=1, bias=False), | |
norm_layer(4 * num), | |
nn.ReLU(True), | |
nn.Conv2d(4 * num, 2 * num, kernel_size=3, padding=1, bias=False), | |
norm_layer(2 * num), | |
nn.ReLU(True), | |
nn.Conv2d(2 * num, num, kernel_size=3, padding=1, bias=False) | |
) | |
self.softmax = nn.Softmax(dim=1) | |
def forward(self, x, num): | |
avg_out = torch.mean(x, dim=1, keepdim=True) | |
max_out, _ = torch.max(x, dim=1, keepdim=True) | |
x = torch.cat([avg_out, max_out], dim=1) | |
x = self.conv(x) | |
x = self.softmax(x) | |
spatial_scale = torch.chunk(x, num, dim=1) | |
return spatial_scale | |
################################################################################################################## | |
class _HFFM(nn.Module): | |
def __init__(self, in_channels, atrous_rates, norm_layer=nn.BatchNorm2d): | |
super(_HFFM, self).__init__() | |
out_channels = 256 | |
self.b0 = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
norm_layer(out_channels), | |
nn.ReLU(True) | |
) | |
rate1, rate2, rate3 = tuple(atrous_rates) | |
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) | |
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) | |
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) | |
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) | |
self.carm = _CARM(in_channels) | |
self.sa = FSFB_SP(4, norm_layer) | |
self.ca = FSFB_CH(out_channels, 4, 8) | |
def forward(self, x, num): | |
x = self.carm(x) | |
# feat1 = self.b0(x) | |
feat1 = self.b1(x) | |
feat2 = self.b2(x) | |
feat3 = self.b3(x) | |
feat4 = self.b4(x) | |
feat = feat1 + feat2 + feat3 + feat4 | |
spatial_atten = self.sa(feat, num) | |
channel_atten = self.ca(feat, num) | |
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 + channel_atten[2] * feat3 + channel_atten[ | |
3] * feat4 | |
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 + spatial_atten[2] * feat3 + spatial_atten[ | |
3] * feat4 | |
feat_sa = feat_sa + feat_ca | |
return feat_sa | |
class _AFFM(nn.Module): | |
def __init__(self, in_channels=256, norm_layer=nn.BatchNorm2d): | |
super(_AFFM, self).__init__() | |
self.sa = FSFB_SP(2, norm_layer) | |
self.ca = FSFB_CH(in_channels, 2, 8) | |
self.carm = _CARM(in_channels) | |
def forward(self, feat1, feat2, hffm, num): | |
feat = feat1 + feat2 | |
spatial_atten = self.sa(feat, num) | |
channel_atten = self.ca(feat, num) | |
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 | |
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 | |
output = self.carm(feat_sa + feat_ca + hffm) | |
# output = self.carm (feat_sa + hffm) | |
return output, channel_atten, spatial_atten | |
class block_Conv3x3(nn.Module): | |
def __init__(self, in_channels): | |
super(block_Conv3x3, self).__init__() | |
self.block = nn.Sequential( | |
nn.Conv2d(in_channels, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
return self.block(x) | |
class CDnetV2(nn.Module): | |
def __init__(self, block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True): | |
self.inplanes = 256 # change | |
self.aux = aux | |
super().__init__() | |
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par) | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, affine=affine_par) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(64, affine=affine_par) | |
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(64, affine=affine_par) | |
self.relu = nn.ReLU(inplace=True) | |
self.dropout = nn.Dropout(0.3) | |
for i in self.bn1.parameters(): | |
i.requires_grad = False | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change | |
# self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layerx_1 = Res_block_1(64, 64, stride=1, dilation=1) | |
self.layerx_2 = Res_block_2(256, 64, stride=1, dilation=1) | |
self.layerx_3 = Res_block_3(256, 64, stride=2, dilation=1) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) | |
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes) | |
self.hffm = _HFFM(2048, [6, 12, 18]) | |
self.affm_1 = _AFFM() | |
self.affm_2 = _AFFM() | |
self.affm_3 = _AFFM() | |
self.affm_4 = _AFFM() | |
self.carm = _CARM(256) | |
self.con_layer1_1 = block_Conv3x3(256) | |
self.con_res2 = block_Conv3x3(256) | |
self.con_res3 = block_Conv3x3(512) | |
self.con_res4 = block_Conv3x3(1024) | |
self.con_res5 = block_Conv3x3(2048) | |
self.dsn1 = nn.Sequential( | |
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0) | |
) | |
self.dsn2 = nn.Sequential( | |
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0) | |
) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, 0.01) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
# for i in m.parameters(): | |
# i.requires_grad = False | |
# self.inplanes = 256 # change | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion, affine=affine_par)) | |
for i in downsample._modules['1'].parameters(): | |
i.requires_grad = False | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes, dilation=dilation)) | |
return nn.Sequential(*layers) | |
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes): | |
# return block(dilation_series,padding_series,num_classes) | |
def base_forward(self, x): | |
x = self.relu(self.bn1(self.conv1(x))) # 1/2 | |
x = self.relu(self.bn2(self.conv2(x))) | |
x = self.relu(self.bn3(self.conv3(x))) | |
x = self.maxpool(x) # 1/4 | |
# x = self.layer1(x) # 1/8 | |
# layer1 | |
x = self.layerx_1(x) # 1/4 | |
layer1_0 = x | |
x = self.layerx_2(x) # 1/4 | |
layer1_0 = self.con_layer1_1(x + layer1_0) # 256 | |
size_layer1_0 = layer1_0.size()[2:] | |
x = self.layerx_3(x) # 1/8 | |
res2 = self.con_res2(x) # 256 | |
size_res2 = res2.size()[2:] | |
# layer2-4 | |
x = self.layer2(x) # 1/16 | |
res3 = self.con_res3(x) # 256 | |
x = self.layer3(x) # 1/16 | |
res4 = self.con_res4(x) # 256 | |
x = self.layer4(x) # 1/16 | |
res5 = self.con_res5(x) # 256 | |
# x = self.res5_con1x1(torch.cat([x, res4], dim=1)) | |
return layer1_0, res2, res3, res4, res5, x, size_layer1_0, size_res2 | |
# return res2, res3, res4, res5, x, layer_1024, size_res2 | |
def forward(self, x): | |
# size = x.size()[2:] | |
layer1_0, res2, res3, res4, res5, layer4, size_layer1_0, size_res2 = self.base_forward(x) | |
hffm = self.hffm(layer4, 4) # 256 HFFM | |
res5 = res5 + hffm | |
aux_feature = res5 # loss_aux | |
# res5 = self.carm(res5) | |
res5, _, _ = self.affm_1(res4, res5, hffm, 2) # 1/16 | |
# aux_feature = res5 | |
res5, _, _ = self.affm_2(res3, res5, hffm, 2) # 1/16 | |
res5 = F.interpolate(res5, size_res2, mode='bilinear', align_corners=True) | |
res5, _, _ = self.affm_3(res2, res5, F.interpolate(hffm, size_res2, mode='bilinear', align_corners=True), 2) | |
res5 = F.interpolate(res5, size_layer1_0, mode='bilinear', align_corners=True) | |
res5, _, _ = self.affm_4(layer1_0, res5, | |
F.interpolate(hffm, size_layer1_0, mode='bilinear', align_corners=True), 2) | |
output = self.dsn1(res5) | |
if self.aux: | |
auxout = self.dsn2(aux_feature) | |
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) | |
# outputs.append(auxout) | |
size = x.size()[2:] | |
pred, pred_aux = output, auxout | |
pred = F.interpolate(pred, size, mode='bilinear', align_corners=True) | |
pred_aux = F.interpolate(pred_aux, size, mode='bilinear', align_corners=True) | |
return pred, pred_aux | |
if __name__ == '__main__': | |
model = CDnetV2(num_classes=3) | |
fake_image = torch.rand(2, 3, 256, 256) | |
output = model(fake_image) | |
for out in output: | |
print(out.shape) | |
# torch.Size([2, 3, 256, 256]) | |
# torch.Size([2, 3, 256, 256]) | |