Spaces:
Sleeping
Sleeping
from typing import Any, Dict, Tuple | |
import torch | |
from lightning import LightningModule | |
from torchmetrics import MaxMetric, MeanMetric | |
from torchmetrics.classification import Accuracy, F1Score, Precision, Recall | |
from torchmetrics.segmentation import MeanIoU, GeneralizedDiceScore | |
class BaseLitModule(LightningModule): | |
"""Example of a `LightningModule` for MNIST classification. | |
A `LightningModule` implements 8 key methods: | |
```python | |
def __init__(self): | |
# Define initialization code here. | |
def setup(self, stage): | |
# Things to setup before each stage, 'fit', 'validate', 'test', 'predict'. | |
# This hook is called on every process when using DDP. | |
def training_step(self, batch, batch_idx): | |
# The complete training step. | |
def validation_step(self, batch, batch_idx): | |
# The complete validation step. | |
def test_step(self, batch, batch_idx): | |
# The complete test step. | |
def predict_step(self, batch, batch_idx): | |
# The complete predict step. | |
def configure_optimizers(self): | |
# Define and configure optimizers and LR schedulers. | |
``` | |
Docs: | |
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html | |
""" | |
def __init__( | |
self, | |
net: torch.nn.Module, | |
num_classes: int, | |
criterion: torch.nn.Module, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler, | |
compile: bool = False, | |
) -> None: | |
super().__init__() | |
# this line allows to access init params with 'self.hparams' attribute | |
# also ensures init params will be stored in ckpt | |
self.save_hyperparameters(logger=False, ignore=['net']) | |
self.net = net | |
# metric objects for calculating and averaging accuracy across batches | |
task = "binary" if self.hparams.num_classes==2 else "multiclass" | |
self.train_accuracy = Accuracy(task=task, num_classes=num_classes) | |
self.train_precision = Precision(task=task, num_classes=num_classes) | |
self.train_recall = Recall(task=task, num_classes=num_classes) | |
self.train_f1score = F1Score(task=task, num_classes=num_classes) | |
self.train_miou = MeanIoU(num_classes=num_classes) | |
self.train_dice = GeneralizedDiceScore(num_classes=num_classes) | |
self.val_accuracy = Accuracy(task=task, num_classes=num_classes) | |
self.val_precision = Precision(task=task, num_classes=num_classes) | |
self.val_recall = Recall(task=task, num_classes=num_classes) | |
self.val_f1score = F1Score(task=task, num_classes=num_classes) | |
self.val_miou = MeanIoU(num_classes=num_classes) | |
self.val_dice = GeneralizedDiceScore(num_classes=num_classes) | |
self.test_accuracy = Accuracy(task=task, num_classes=num_classes) | |
self.test_precision = Precision(task=task, num_classes=num_classes) | |
self.test_recall = Recall(task=task, num_classes=num_classes) | |
self.test_f1score = F1Score(task=task, num_classes=num_classes) | |
self.test_miou = MeanIoU(num_classes=num_classes) | |
self.test_dice = GeneralizedDiceScore(num_classes=num_classes) | |
# for averaging loss across batches | |
self.train_loss = MeanMetric() | |
self.val_loss = MeanMetric() | |
self.test_loss = MeanMetric() | |
# for tracking best so far validation accuracy | |
self.val_miou_best = MaxMetric() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Perform a forward pass through the model `self.net`. | |
:param x: A tensor of images. | |
:return: A tensor of logits. | |
""" | |
return self.net(x) | |
def on_train_start(self) -> None: | |
"""Lightning hook that is called when training begins.""" | |
# by default lightning executes validation step sanity checks before training starts, | |
# so it's worth to make sure validation metrics don't store results from these checks | |
self.val_loss.reset() | |
self.val_accuracy.reset() | |
self.val_precision.reset() | |
self.val_recall.reset() | |
self.val_f1score.reset() | |
self.val_miou.reset() | |
self.val_dice.reset() | |
self.val_miou_best.reset() | |
def model_step( | |
self, batch: Tuple[torch.Tensor, torch.Tensor] | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Perform a single model step on a batch of data. | |
:param batch: A batch of data (a tuple) containing the input tensor of images and target labels. | |
:return: A tuple containing (in order): | |
- A tensor of losses. | |
- A tensor of predictions. | |
- A tensor of target labels. | |
""" | |
x, y = batch["img"], batch["ann"] | |
logits = self.forward(x) | |
loss = self.hparams.criterion(logits, y) | |
preds = torch.argmax(logits, dim=1) | |
return loss, preds, y | |
def training_step( | |
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int | |
) -> torch.Tensor: | |
"""Perform a single training step on a batch of data from the training set. | |
:param batch: A batch of data (a tuple) containing the input tensor of images and target | |
labels. | |
:param batch_idx: The index of the current batch. | |
:return: A tensor of losses between model predictions and targets. | |
""" | |
loss, preds, targets = self.model_step(batch) | |
# print(preds.shape) # (8, 256, 256) | |
# print(targets.shape) # (8, 256, 256) | |
# update and log metrics | |
self.train_loss(loss) | |
self.train_accuracy(preds, targets) | |
self.train_precision(preds, targets) | |
self.train_recall(preds, targets) | |
self.train_f1score(preds, targets) | |
self.train_miou(preds, targets) | |
self.train_dice(preds, targets) | |
self.log("train/loss", self.train_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/accuracy", self.train_accuracy, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/precision", self.train_precision, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/recall", self.train_recall, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/f1score", self.train_f1score, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/miou", self.train_miou, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/dice", self.train_dice, on_step=False, on_epoch=True, prog_bar=True) | |
# return loss or backpropagation will fail | |
return loss | |
def on_train_epoch_end(self) -> None: | |
"Lightning hook that is called when a training epoch ends." | |
pass | |
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> None: | |
"""Perform a single validation step on a batch of data from the validation set. | |
:param batch: A batch of data (a tuple) containing the input tensor of images and target | |
labels. | |
:param batch_idx: The index of the current batch. | |
""" | |
loss, preds, targets = self.model_step(batch) | |
# update and log metrics | |
self.val_loss(loss) | |
self.val_accuracy(preds, targets) | |
self.val_precision(preds, targets) | |
self.val_recall(preds, targets) | |
self.val_f1score(preds, targets) | |
self.val_miou(preds, targets) | |
self.val_dice(preds, targets) | |
self.log("val/loss", self.val_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/accuracy", self.val_accuracy, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/precision", self.val_precision, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/recall", self.val_recall, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/f1score", self.val_f1score, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/miou", self.val_miou, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/dice", self.val_dice, on_step=False, on_epoch=True, prog_bar=True) | |
def on_validation_epoch_end(self) -> None: | |
"Lightning hook that is called when a validation epoch ends." | |
miou = self.val_miou.compute() # get current val acc | |
self.val_miou_best(miou) # update best so far val acc | |
# log `val_acc_best` as a value through `.compute()` method, instead of as a metric object | |
# otherwise metric would be reset by lightning after each epoch | |
self.log("val/miou_best", self.val_miou_best.compute(), sync_dist=True, prog_bar=True) | |
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> None: | |
"""Perform a single test step on a batch of data from the test set. | |
:param batch: A batch of data (a tuple) containing the input tensor of images and target | |
labels. | |
:param batch_idx: The index of the current batch. | |
""" | |
loss, preds, targets = self.model_step(batch) | |
# update and log metrics | |
self.test_loss(loss) | |
# update and log metrics | |
self.test_accuracy(preds, targets) | |
self.test_precision(preds, targets) | |
self.test_recall(preds, targets) | |
self.test_f1score(preds, targets) | |
self.test_miou(preds, targets) | |
self.test_dice(preds, targets) | |
self.log("test/loss", self.test_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/accuracy", self.test_accuracy, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/precision", self.test_precision, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/recall", self.test_recall, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/f1score", self.test_f1score, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/miou", self.test_miou, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/dice", self.test_dice, on_step=False, on_epoch=True, prog_bar=True) | |
def on_test_epoch_end(self) -> None: | |
"""Lightning hook that is called when a test epoch ends.""" | |
pass | |
def setup(self, stage: str) -> None: | |
"""Lightning hook that is called at the beginning of fit (train + validate), validate, | |
test, or predict. | |
This is a good hook when you need to build models dynamically or adjust something about | |
them. This hook is called on every process when using DDP. | |
:param stage: Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. | |
""" | |
if self.hparams.compile and stage == "fit": | |
self.net = torch.compile(self.net) | |
def configure_optimizers(self) -> Dict[str, Any]: | |
"""Choose what optimizers and learning-rate schedulers to use in your optimization. | |
Normally you'd need one. But in the case of GANs or similar you might have multiple. | |
Examples: | |
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers | |
:return: A dict containing the configured optimizers and learning-rate schedulers to be used for training. | |
""" | |
optimizer = self.hparams.optimizer(params=self.trainer.model.parameters()) | |
if self.hparams.scheduler is not None: | |
scheduler = self.hparams.scheduler(optimizer=optimizer) | |
return { | |
"optimizer": optimizer, | |
"lr_scheduler": { | |
"scheduler": scheduler, | |
"monitor": "val/loss", | |
"interval": "epoch", | |
"frequency": 1, | |
}, | |
} | |
return {"optimizer": optimizer} | |
if __name__ == "__main__": | |
_ = BaseLitModule(None, None, None, None) | |