Spaces:
Sleeping
Sleeping
# 论文地址:https://arxiv.org/abs/2407.07365 | |
# | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import logging | |
import os | |
import numpy as np | |
import torch | |
import torch._utils | |
import torch.nn as nn | |
import torch.nn.functional as F | |
BatchNorm2d = nn.BatchNorm2d | |
# BN_MOMENTUM = 0.01 | |
relu_inplace = True | |
BN_MOMENTUM = 0.1 | |
ALIGN_CORNERS = True | |
logger = logging.getLogger(__name__) | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
from yacs.config import CfgNode as CN | |
import math | |
from einops import rearrange | |
# configs for HRNet48 | |
HRNET_48 = CN() | |
HRNET_48.FINAL_CONV_KERNEL = 1 | |
HRNET_48.STAGE1 = CN() | |
HRNET_48.STAGE1.NUM_MODULES = 1 | |
HRNET_48.STAGE1.NUM_BRANCHES = 1 | |
HRNET_48.STAGE1.NUM_BLOCKS = [4] | |
HRNET_48.STAGE1.NUM_CHANNELS = [64] | |
HRNET_48.STAGE1.BLOCK = 'BOTTLENECK' | |
HRNET_48.STAGE1.FUSE_METHOD = 'SUM' | |
HRNET_48.STAGE2 = CN() | |
HRNET_48.STAGE2.NUM_MODULES = 1 | |
HRNET_48.STAGE2.NUM_BRANCHES = 2 | |
HRNET_48.STAGE2.NUM_BLOCKS = [4, 4] | |
HRNET_48.STAGE2.NUM_CHANNELS = [48, 96] | |
HRNET_48.STAGE2.BLOCK = 'BASIC' | |
HRNET_48.STAGE2.FUSE_METHOD = 'SUM' | |
HRNET_48.STAGE3 = CN() | |
HRNET_48.STAGE3.NUM_MODULES = 4 | |
HRNET_48.STAGE3.NUM_BRANCHES = 3 | |
HRNET_48.STAGE3.NUM_BLOCKS = [4, 4, 4] | |
HRNET_48.STAGE3.NUM_CHANNELS = [48, 96, 192] | |
HRNET_48.STAGE3.BLOCK = 'BASIC' | |
HRNET_48.STAGE3.FUSE_METHOD = 'SUM' | |
HRNET_48.STAGE4 = CN() | |
HRNET_48.STAGE4.NUM_MODULES = 3 | |
HRNET_48.STAGE4.NUM_BRANCHES = 4 | |
HRNET_48.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | |
HRNET_48.STAGE4.NUM_CHANNELS = [48, 96, 192, 384] | |
HRNET_48.STAGE4.BLOCK = 'BASIC' | |
HRNET_48.STAGE4.FUSE_METHOD = 'SUM' | |
HRNET_32 = CN() | |
HRNET_32.FINAL_CONV_KERNEL = 1 | |
HRNET_32.STAGE1 = CN() | |
HRNET_32.STAGE1.NUM_MODULES = 1 | |
HRNET_32.STAGE1.NUM_BRANCHES = 1 | |
HRNET_32.STAGE1.NUM_BLOCKS = [4] | |
HRNET_32.STAGE1.NUM_CHANNELS = [64] | |
HRNET_32.STAGE1.BLOCK = 'BOTTLENECK' | |
HRNET_32.STAGE1.FUSE_METHOD = 'SUM' | |
HRNET_32.STAGE2 = CN() | |
HRNET_32.STAGE2.NUM_MODULES = 1 | |
HRNET_32.STAGE2.NUM_BRANCHES = 2 | |
HRNET_32.STAGE2.NUM_BLOCKS = [4, 4] | |
HRNET_32.STAGE2.NUM_CHANNELS = [32, 64] | |
HRNET_32.STAGE2.BLOCK = 'BASIC' | |
HRNET_32.STAGE2.FUSE_METHOD = 'SUM' | |
HRNET_32.STAGE3 = CN() | |
HRNET_32.STAGE3.NUM_MODULES = 4 | |
HRNET_32.STAGE3.NUM_BRANCHES = 3 | |
HRNET_32.STAGE3.NUM_BLOCKS = [4, 4, 4] | |
HRNET_32.STAGE3.NUM_CHANNELS = [32, 64, 128] | |
HRNET_32.STAGE3.BLOCK = 'BASIC' | |
HRNET_32.STAGE3.FUSE_METHOD = 'SUM' | |
HRNET_32.STAGE4 = CN() | |
HRNET_32.STAGE4.NUM_MODULES = 3 | |
HRNET_32.STAGE4.NUM_BRANCHES = 4 | |
HRNET_32.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | |
HRNET_32.STAGE4.NUM_CHANNELS = [32, 64, 128, 256] | |
HRNET_32.STAGE4.BLOCK = 'BASIC' | |
HRNET_32.STAGE4.FUSE_METHOD = 'SUM' | |
HRNET_18 = CN() | |
HRNET_18.FINAL_CONV_KERNEL = 1 | |
HRNET_18.STAGE1 = CN() | |
HRNET_18.STAGE1.NUM_MODULES = 1 | |
HRNET_18.STAGE1.NUM_BRANCHES = 1 | |
HRNET_18.STAGE1.NUM_BLOCKS = [4] | |
HRNET_18.STAGE1.NUM_CHANNELS = [64] | |
HRNET_18.STAGE1.BLOCK = 'BOTTLENECK' | |
HRNET_18.STAGE1.FUSE_METHOD = 'SUM' | |
HRNET_18.STAGE2 = CN() | |
HRNET_18.STAGE2.NUM_MODULES = 1 | |
HRNET_18.STAGE2.NUM_BRANCHES = 2 | |
HRNET_18.STAGE2.NUM_BLOCKS = [4, 4] | |
HRNET_18.STAGE2.NUM_CHANNELS = [18, 36] | |
HRNET_18.STAGE2.BLOCK = 'BASIC' | |
HRNET_18.STAGE2.FUSE_METHOD = 'SUM' | |
HRNET_18.STAGE3 = CN() | |
HRNET_18.STAGE3.NUM_MODULES = 4 | |
HRNET_18.STAGE3.NUM_BRANCHES = 3 | |
HRNET_18.STAGE3.NUM_BLOCKS = [4, 4, 4] | |
HRNET_18.STAGE3.NUM_CHANNELS = [18, 36, 72] | |
HRNET_18.STAGE3.BLOCK = 'BASIC' | |
HRNET_18.STAGE3.FUSE_METHOD = 'SUM' | |
HRNET_18.STAGE4 = CN() | |
HRNET_18.STAGE4.NUM_MODULES = 3 | |
HRNET_18.STAGE4.NUM_BRANCHES = 4 | |
HRNET_18.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | |
HRNET_18.STAGE4.NUM_CHANNELS = [18, 36, 72, 144] | |
HRNET_18.STAGE4.BLOCK = 'BASIC' | |
HRNET_18.STAGE4.FUSE_METHOD = 'SUM' | |
class PPM(nn.Module): | |
def __init__(self, in_dim, reduction_dim, bins): | |
super(PPM, self).__init__() | |
self.features = [] | |
for bin in bins: | |
self.features.append(nn.Sequential( | |
nn.AdaptiveAvgPool2d(bin), | |
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False), | |
nn.BatchNorm2d(reduction_dim), | |
nn.ReLU(inplace=True) | |
)) | |
self.features = nn.ModuleList(self.features) | |
def forward(self, x): | |
x_size = x.size() | |
out = [x] | |
for f in self.features: | |
out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True)) | |
return torch.cat(out, 1) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out = out + residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, | |
bias=False) | |
self.bn3 = BatchNorm2d(planes * self.expansion, | |
momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
# att = self.downsample(att) | |
out = out + residual | |
out = self.relu(out) | |
return out | |
class HighResolutionModule(nn.Module): | |
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, | |
num_channels, fuse_method, multi_scale_output=True): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches( | |
num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
def _check_branches(self, num_branches, blocks, num_blocks, | |
num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
num_branches, len(num_blocks)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
num_branches, len(num_channels)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
num_branches, len(num_inchannels)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, | |
stride=1): | |
downsample = None | |
if stride != 1 or \ | |
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
BatchNorm2d(num_channels[branch_index] * block.expansion, | |
momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index], stride, downsample)) | |
self.num_inchannels[branch_index] = \ | |
num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index])) | |
return nn.Sequential(*layers) | |
# 创建平行层 | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append( | |
self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches # 3 | |
num_inchannels = self.num_inchannels # [48, 96, 192] | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_inchannels[i], | |
1, | |
1, | |
0, | |
bias=False), | |
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM))) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i - j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False), | |
BatchNorm2d(num_outchannels_conv3x3, | |
momentum=BN_MOMENTUM))) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False), | |
BatchNorm2d(num_outchannels_conv3x3, | |
momentum=BN_MOMENTUM), | |
nn.ReLU(inplace=relu_inplace))) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
elif j > i: | |
width_output = x[i].shape[-1] | |
height_output = x[i].shape[-2] | |
y = y + F.interpolate( | |
self.fuse_layers[i][j](x[j]), | |
size=[height_output, width_output], | |
mode='bilinear', align_corners=ALIGN_CORNERS) | |
else: | |
y = y + self.fuse_layers[i][j](x[j]) | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
blocks_dict = { | |
'BASIC': BasicBlock, | |
'BOTTLENECK': Bottleneck | |
} | |
class HRcloudNet(nn.Module): | |
def __init__(self, num_classes=2, base_c=48, **kwargs): | |
global ALIGN_CORNERS | |
extra = HRNET_48 | |
super(HRcloudNet, self).__init__() | |
ALIGN_CORNERS = True | |
# ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS | |
self.num_classes = num_classes | |
# stem net | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
self.stage1_cfg = extra['STAGE1'] | |
num_channels = self.stage1_cfg['NUM_CHANNELS'][0] | |
block = blocks_dict[self.stage1_cfg['BLOCK']] | |
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] | |
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) | |
stage1_out_channel = block.expansion * num_channels | |
self.stage2_cfg = extra['STAGE2'] | |
num_channels = self.stage2_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage2_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition1 = self._make_transition_layer( | |
[stage1_out_channel], num_channels) | |
self.stage2, pre_stage_channels = self._make_stage( | |
self.stage2_cfg, num_channels) | |
self.stage3_cfg = extra['STAGE3'] | |
num_channels = self.stage3_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage3_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition2 = self._make_transition_layer( | |
pre_stage_channels, num_channels) # 只在pre[-1]与cur[-1]之间下采样? | |
self.stage3, pre_stage_channels = self._make_stage( | |
self.stage3_cfg, num_channels) | |
self.stage4_cfg = extra['STAGE4'] | |
num_channels = self.stage4_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage4_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition3 = self._make_transition_layer( | |
pre_stage_channels, num_channels) | |
self.stage4, pre_stage_channels = self._make_stage( | |
self.stage4_cfg, num_channels, multi_scale_output=True) | |
self.out_conv = OutConv(base_c, num_classes) | |
last_inp_channels = int(np.sum(pre_stage_channels)) | |
self.corr = Corr(nclass=2) | |
self.proj = nn.Sequential( | |
# 512 32 | |
nn.Conv2d(720, 48, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(48), | |
nn.ReLU(inplace=True), | |
nn.Dropout2d(0.1), | |
) | |
# self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear) | |
self.up2 = Up(base_c * 8, base_c * 4, True) | |
self.up3 = Up(base_c * 4, base_c * 2, True) | |
self.up4 = Up(base_c * 2, base_c, True) | |
fea_dim = 720 | |
bins = (1, 2, 3, 6) | |
self.ppm = PPM(fea_dim, int(fea_dim / len(bins)), bins) | |
fea_dim *= 2 | |
self.cls = nn.Sequential( | |
nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True), | |
nn.Dropout2d(p=0.1), | |
nn.Conv2d(512, 2, kernel_size=1) | |
) | |
''' | |
转换层的作用有两种情况: | |
当前分支数小于之前分支数时,仅对前几个分支进行通道数调整。 | |
当前分支数大于之前分支数时,新建一些转换层,对多余的分支进行下采样,改变通道数以适应后续的连接。 | |
最终,这些转换层会被组合成一个 nn.ModuleList 对象,并在网络的构建过程中使用。 | |
这有助于确保每个分支的通道数在不同阶段之间能够正确匹配,以便进行特征的融合和连接 | |
''' | |
def _make_transition_layer( | |
self, num_channels_pre_layer, num_channels_cur_layer): | |
# 现在的分支数 | |
num_branches_cur = len(num_channels_cur_layer) # 3 | |
# 处理前的分支数 | |
num_branches_pre = len(num_channels_pre_layer) # 2 | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
# 如果当前分支数小于之前分支数,仅针对第一到第二阶段 | |
if i < num_branches_pre: | |
# 如果对应层的通道数不一致,则进行转化( | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append(nn.Sequential( | |
nn.Conv2d(num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
3, | |
1, | |
1, | |
bias=False), | |
BatchNorm2d( | |
num_channels_cur_layer[i], momentum=BN_MOMENTUM), | |
nn.ReLU(inplace=relu_inplace))) | |
else: | |
transition_layers.append(None) | |
else: # 在新建层下采样改变通道数 | |
conv3x3s = [] | |
for j in range(i + 1 - num_branches_pre): # 3 | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = num_channels_cur_layer[i] \ | |
if j == i - num_branches_pre else inchannels | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d( | |
inchannels, outchannels, 3, 2, 1, bias=False), | |
BatchNorm2d(outchannels, momentum=BN_MOMENTUM), | |
nn.ReLU(inplace=relu_inplace))) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
''' | |
_make_layer 函数的主要作用是创建一个由多个相同类型的残差块(Residual Block)组成的层。 | |
''' | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(inplanes, planes, stride, downsample)) | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(inplanes, planes)) | |
return nn.Sequential(*layers) | |
# 多尺度融合 | |
def _make_stage(self, layer_config, num_inchannels, | |
multi_scale_output=True): | |
num_modules = layer_config['NUM_MODULES'] | |
num_branches = layer_config['NUM_BRANCHES'] | |
num_blocks = layer_config['NUM_BLOCKS'] | |
num_channels = layer_config['NUM_CHANNELS'] | |
block = blocks_dict[layer_config['BLOCK']] | |
fuse_method = layer_config['FUSE_METHOD'] | |
modules = [] | |
for i in range(num_modules): # 重复4次 | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule(num_branches, | |
block, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
fuse_method, | |
reset_multi_scale_output) | |
) | |
num_inchannels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), num_inchannels | |
def forward(self, input, need_fp=True, use_corr=True): | |
# from ipdb import set_trace | |
# set_trace() | |
x = self.conv1(input) | |
x = self.bn1(x) | |
x = self.relu(x) | |
# x_176 = x | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.stage2_cfg['NUM_BRANCHES']): # 2 | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
# Y1 | |
x_list = [] | |
for i in range(self.stage3_cfg['NUM_BRANCHES']): | |
if self.transition2[i] is not None: | |
if i < self.stage2_cfg['NUM_BRANCHES']: | |
x_list.append(self.transition2[i](y_list[i])) | |
else: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.stage4_cfg['NUM_BRANCHES']): | |
if self.transition3[i] is not None: | |
if i < self.stage3_cfg['NUM_BRANCHES']: | |
x_list.append(self.transition3[i](y_list[i])) | |
else: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
x = self.stage4(x_list) | |
dict_return = {} | |
# Upsampling | |
x0_h, x0_w = x[0].size(2), x[0].size(3) | |
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) | |
# x = self.stage3_(x) | |
x[2] = self.up2(x[3], x[2]) | |
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) | |
# x = self.stage2_(x) | |
x[1] = self.up3(x[2], x[1]) | |
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) | |
x[0] = self.up4(x[1], x[0]) | |
xk = torch.cat([x[0], x1, x2, x3], 1) | |
# PPM | |
feat = self.ppm(xk) | |
x = self.cls(feat) | |
# fp分支 | |
if need_fp: | |
logits = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True) | |
# logits = self.out_conv(torch.cat((x, nn.Dropout2d(0.5)(x)))) | |
out = logits | |
out_fp = logits | |
if use_corr: | |
proj_feats = self.proj(xk) | |
corr_out = self.corr(proj_feats, out) | |
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True) | |
dict_return['corr_out'] = corr_out | |
dict_return['out'] = out | |
dict_return['out_fp'] = out_fp | |
return dict_return['out'] | |
out = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True) | |
if use_corr: # True | |
proj_feats = self.proj(xk) | |
# 计算 | |
corr_out = self.corr(proj_feats, out) | |
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True) | |
dict_return['corr_out'] = corr_out | |
dict_return['out'] = out | |
return dict_return['out'] | |
# return x | |
def init_weights(self, pretrained='', ): | |
logger.info('=> init weights from normal distribution') | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight, std=0.001) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
if os.path.isfile(pretrained): | |
pretrained_dict = torch.load(pretrained) | |
logger.info('=> loading pretrained model {}'.format(pretrained)) | |
model_dict = self.state_dict() | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() | |
if k in model_dict.keys()} | |
for k, _ in pretrained_dict.items(): | |
logger.info( | |
'=> loading {} pretrained model {}'.format(k, pretrained)) | |
model_dict.update(pretrained_dict) | |
self.load_state_dict(model_dict) | |
class OutConv(nn.Sequential): | |
def __init__(self, in_channels, num_classes): | |
super(OutConv, self).__init__( | |
nn.Conv2d(720, num_classes, kernel_size=1) | |
) | |
class DoubleConv(nn.Sequential): | |
def __init__(self, in_channels, out_channels, mid_channels=None): | |
if mid_channels is None: | |
mid_channels = out_channels | |
super(DoubleConv, self).__init__( | |
nn.Conv2d(in_channels + out_channels, mid_channels, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(mid_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
) | |
class Up(nn.Module): | |
def __init__(self, in_channels, out_channels, bilinear=True): | |
super(Up, self).__init__() | |
if bilinear: | |
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) | |
else: | |
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) | |
self.conv = DoubleConv(in_channels, out_channels) | |
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: | |
x1 = self.up(x1) | |
# [N, C, H, W] | |
diff_y = x2.size()[2] - x1.size()[2] | |
diff_x = x2.size()[3] - x1.size()[3] | |
# padding_left, padding_right, padding_top, padding_bottom | |
x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2, | |
diff_y // 2, diff_y - diff_y // 2]) | |
x = torch.cat([x2, x1], dim=1) | |
x = self.conv(x) | |
return x | |
class Corr(nn.Module): | |
def __init__(self, nclass=2): | |
super(Corr, self).__init__() | |
self.nclass = nclass | |
self.conv1 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True) | |
self.conv2 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True) | |
def forward(self, feature_in, out): | |
# in torch.Size([4, 32, 22, 22]) | |
# out = [4 2 352 352] | |
h_in, w_in = math.ceil(feature_in.shape[2] / (1)), math.ceil(feature_in.shape[3] / (1)) | |
out = F.interpolate(out.detach(), (h_in, w_in), mode='bilinear', align_corners=True) | |
feature = F.interpolate(feature_in, (h_in, w_in), mode='bilinear', align_corners=True) | |
f1 = rearrange(self.conv1(feature), 'n c h w -> n c (h w)') | |
f2 = rearrange(self.conv2(feature), 'n c h w -> n c (h w)') | |
out_temp = rearrange(out, 'n c h w -> n c (h w)') | |
corr_map = torch.matmul(f1.transpose(1, 2), f2) / torch.sqrt(torch.tensor(f1.shape[1]).float()) | |
corr_map = F.softmax(corr_map, dim=-1) | |
# out_temp 2 2 484 | |
# corr_map 4 484 484 | |
out = rearrange(torch.matmul(out_temp, corr_map), 'n c (h w) -> n c h w', h=h_in, w=w_in) | |
# out torch.Size([4, 2, 22, 22]) | |
return out | |
if __name__ == '__main__': | |
input = torch.randn(4, 3, 352, 352) | |
cloud = HRcloudNet(num_classes=2) | |
output = cloud(input) | |
print(output.shape) | |
# torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) |