Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2024/8/7 下午3:51 | |
# @Author : xiaoshun | |
# @Email : [email protected] | |
# @File : kappamask.py.py | |
# @Software: PyCharm | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
class KappaMask(nn.Module): | |
def __init__(self, num_classes=2, in_channels=3): | |
super().__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(in_channels, 64, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(64, 128, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(128, 256, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.conv4 = nn.Sequential( | |
nn.Conv2d(256, 512, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, 512, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.drop4 = nn.Dropout(0.5) | |
self.conv5 = nn.Sequential( | |
nn.Conv2d(512, 1024, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(1024, 1024, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.drop5 = nn.Dropout(0.5) | |
self.up6 = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(1024, 512, 2), | |
nn.ReLU(inplace=True) | |
) | |
self.conv6 = nn.Sequential( | |
nn.Conv2d(1024, 512, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, 512, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.up7 = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(512, 256, 2), | |
nn.ReLU(inplace=True) | |
) | |
self.conv7 = nn.Sequential( | |
nn.Conv2d(512, 256, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.up8 = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(256, 128, 2), | |
nn.ReLU(inplace=True) | |
) | |
self.conv8 = nn.Sequential( | |
nn.Conv2d(256, 128, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.up9 = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(128, 64, 2), | |
nn.ReLU(inplace=True) | |
) | |
self.conv9 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 2, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
self.conv10 = nn.Conv2d(2, num_classes, 1) | |
self.__init_weights() | |
def __init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
def forward(self, x): | |
conv1 = self.conv1(x) | |
pool1 = F.max_pool2d(conv1, 2, 2) | |
conv2 = self.conv2(pool1) | |
pool2 = F.max_pool2d(conv2, 2, 2) | |
conv3 = self.conv3(pool2) | |
pool3 = F.max_pool2d(conv3, 2, 2) | |
conv4 = self.conv4(pool3) | |
drop4 = self.drop4(conv4) | |
pool4 = F.max_pool2d(drop4, 2, 2) | |
conv5 = self.conv5(pool4) | |
drop5 = self.drop5(conv5) | |
up6 = self.up6(drop5) | |
merge6 = torch.cat((drop4, up6), dim=1) | |
conv6 = self.conv6(merge6) | |
up7 = self.up7(conv6) | |
merge7 = torch.cat((conv3, up7), dim=1) | |
conv7 = self.conv7(merge7) | |
up8 = self.up8(conv7) | |
merge8 = torch.cat((conv2, up8), dim=1) | |
conv8 = self.conv8(merge8) | |
up9 = self.up9(conv8) | |
merge9 = torch.cat((conv1, up9), dim=1) | |
conv9 = self.conv9(merge9) | |
output = self.conv10(conv9) | |
return output | |
if __name__ == '__main__': | |
model = KappaMask(num_classes=2, in_channels=3) | |
fake_data = torch.rand(2, 3, 256, 256) | |
output = model(fake_data) | |
print(output.shape) | |