Spaces:
Sleeping
Sleeping
from pathlib import Path | |
import pytest | |
import torch | |
from src.data.celeba_datamodule import MNISTDataModule | |
def test_mnist_datamodule(batch_size: int) -> None: | |
"""Tests `MNISTDataModule` to verify that it can be downloaded correctly, that the necessary | |
attributes were created (e.g., the dataloader objects), and that dtypes and batch sizes | |
correctly match. | |
:param batch_size: Batch size of the data to be loaded by the dataloader. | |
""" | |
data_dir = "data/" | |
dm = MNISTDataModule(data_dir=data_dir, batch_size=batch_size) | |
dm.prepare_data() | |
assert not dm.data_train and not dm.data_val and not dm.data_test | |
assert Path(data_dir, "MNIST").exists() | |
assert Path(data_dir, "MNIST", "raw").exists() | |
dm.setup() | |
assert dm.data_train and dm.data_val and dm.data_test | |
assert dm.train_dataloader() and dm.val_dataloader() and dm.test_dataloader() | |
num_datapoints = len(dm.data_train) + len(dm.data_val) + len(dm.data_test) | |
assert num_datapoints == 70_000 | |
batch = next(iter(dm.train_dataloader())) | |
x, y = batch | |
assert len(x) == batch_size | |
assert len(y) == batch_size | |
assert x.dtype == torch.float32 | |
assert y.dtype == torch.int64 | |