import torch import torch.nn as nn import torch.nn.functional as F class UNet(nn.Module): def __init__(self, in_channels, out_channels): super(UNet, self).__init__() def conv_block(in_channels, out_channels): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) self.encoder1 = conv_block(in_channels, 64) self.encoder2 = conv_block(64, 128) self.encoder3 = conv_block(128, 256) self.encoder4 = conv_block(256, 512) self.bottleneck = conv_block(512, 1024) self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) self.decoder4 = conv_block(1024, 512) self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) self.decoder3 = conv_block(512, 256) self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) self.decoder2 = conv_block(256, 128) self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) self.decoder1 = conv_block(128, 64) self.final = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): enc1 = self.encoder1(x) enc2 = self.encoder2(F.max_pool2d(enc1, kernel_size=2, stride=2)) enc3 = self.encoder3(F.max_pool2d(enc2, kernel_size=2, stride=2)) enc4 = self.encoder4(F.max_pool2d(enc3, kernel_size=2, stride=2)) bottleneck = self.bottleneck(F.max_pool2d(enc4, kernel_size=2, stride=2)) dec4 = self.upconv4(bottleneck) dec4 = torch.cat((dec4, enc4), dim=1) dec4 = self.decoder4(dec4) dec3 = self.upconv3(dec4) dec3 = torch.cat((dec3, enc3), dim=1) dec3 = self.decoder3(dec3) dec2 = self.upconv2(dec3) dec2 = torch.cat((dec2, enc2), dim=1) dec2 = self.decoder2(dec2) dec1 = self.upconv1(dec2) dec1 = torch.cat((dec1, enc1), dim=1) dec1 = self.decoder1(dec1) return self.final(dec1) if __name__ == "__main__": model = UNet(in_channels=3,out_channels=7) fake_img = torch.rand(size=(2,3,224,224)) print(fake_img.shape) # torch.Size([2, 3, 224, 224]) out = model(fake_img) print(out.shape) # torch.Size([2, 7, 224, 224])