onescotch commited on
Commit
0515b76
·
1 Parent(s): 010a8bc

update config for new version mmdet

Browse files
pretrained_models/mmdet/mmdet_faster_rcnn_r50_fpn_coco.py CHANGED
@@ -26,7 +26,12 @@ total_epochs = 12
26
 
27
  model = dict(
28
  type='FasterRCNN',
29
- pretrained='torchvision://resnet50',
 
 
 
 
 
30
  backbone=dict(
31
  type='ResNet',
32
  depth=50,
@@ -35,7 +40,8 @@ model = dict(
35
  frozen_stages=1,
36
  norm_cfg=dict(type='BN', requires_grad=True),
37
  norm_eval=True,
38
- style='pytorch'),
 
39
  neck=dict(
40
  type='FPN',
41
  in_channels=[256, 512, 1024, 2048],
@@ -134,49 +140,59 @@ model = dict(
134
 
135
  dataset_type = 'CocoDataset'
136
  data_root = 'data/coco/'
137
- img_norm_cfg = dict(
138
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
139
  train_pipeline = [
140
- dict(type='LoadImageFromFile'),
141
  dict(type='LoadAnnotations', with_bbox=True),
142
- dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
143
- dict(type='RandomFlip', flip_ratio=0.5),
144
- dict(type='Normalize', **img_norm_cfg),
145
- dict(type='Pad', size_divisor=32),
146
- dict(type='DefaultFormatBundle'),
147
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
148
  ]
149
  test_pipeline = [
150
- dict(type='LoadImageFromFile'),
 
 
 
151
  dict(
152
- type='MultiScaleFlipAug',
153
- img_scale=(1333, 800),
154
- flip=False,
155
- transforms=[
156
- dict(type='Resize', keep_ratio=True),
157
- dict(type='RandomFlip'),
158
- dict(type='Normalize', **img_norm_cfg),
159
- dict(type='Pad', size_divisor=32),
160
- dict(type='DefaultFormatBundle'),
161
- dict(type='Collect', keys=['img']),
162
- ])
163
  ]
164
- data = dict(
165
- samples_per_gpu=2,
166
- workers_per_gpu=2,
167
- train=dict(
 
 
 
168
  type=dataset_type,
169
- ann_file=data_root + 'annotations/instances_train2017.json',
170
- img_prefix=data_root + 'train2017/',
171
- pipeline=train_pipeline),
172
- val=dict(
 
 
 
 
 
 
 
 
 
173
  type=dataset_type,
174
- ann_file=data_root + 'annotations/instances_val2017.json',
175
- img_prefix=data_root + 'val2017/',
176
- pipeline=test_pipeline),
177
- test=dict(
178
- type=dataset_type,
179
- ann_file=data_root + 'annotations/instances_val2017.json',
180
- img_prefix=data_root + 'val2017/',
181
- pipeline=test_pipeline))
182
- evaluation = dict(interval=1, metric='bbox')
 
 
 
 
 
 
 
26
 
27
  model = dict(
28
  type='FasterRCNN',
29
+ data_preprocessor=dict(
30
+ type='DetDataPreprocessor',
31
+ mean=[123.675, 116.28, 103.53],
32
+ std=[58.395, 57.12, 57.375],
33
+ bgr_to_rgb=True,
34
+ pad_size_divisor=32),
35
  backbone=dict(
36
  type='ResNet',
37
  depth=50,
 
40
  frozen_stages=1,
41
  norm_cfg=dict(type='BN', requires_grad=True),
42
  norm_eval=True,
43
+ style='pytorch',
44
+ init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
45
  neck=dict(
46
  type='FPN',
47
  in_channels=[256, 512, 1024, 2048],
 
140
 
141
  dataset_type = 'CocoDataset'
142
  data_root = 'data/coco/'
143
+ backend_args = None
144
+
145
  train_pipeline = [
146
+ dict(type='LoadImageFromFile', backend_args=backend_args),
147
  dict(type='LoadAnnotations', with_bbox=True),
148
+ dict(type='Resize', scale=(1333, 800), keep_ratio=True),
149
+ dict(type='RandomFlip', prob=0.5),
150
+ dict(type='PackDetInputs')
 
 
 
151
  ]
152
  test_pipeline = [
153
+ dict(type='LoadImageFromFile', backend_args=backend_args),
154
+ dict(type='Resize', scale=(1333, 800), keep_ratio=True),
155
+ # If you don't have a gt annotation, delete the pipeline
156
+ dict(type='LoadAnnotations', with_bbox=True),
157
  dict(
158
+ type='PackDetInputs',
159
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
160
+ 'scale_factor'))
 
 
 
 
 
 
 
 
161
  ]
162
+ train_dataloader = dict(
163
+ batch_size=2,
164
+ num_workers=2,
165
+ persistent_workers=True,
166
+ sampler=dict(type='DefaultSampler', shuffle=True),
167
+ batch_sampler=dict(type='AspectRatioBatchSampler'),
168
+ dataset=dict(
169
  type=dataset_type,
170
+ data_root=data_root,
171
+ ann_file='annotations/instances_train2017.json',
172
+ data_prefix=dict(img='train2017/'),
173
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
174
+ pipeline=train_pipeline,
175
+ backend_args=backend_args))
176
+ val_dataloader = dict(
177
+ batch_size=1,
178
+ num_workers=2,
179
+ persistent_workers=True,
180
+ drop_last=False,
181
+ sampler=dict(type='DefaultSampler', shuffle=False),
182
+ dataset=dict(
183
  type=dataset_type,
184
+ data_root=data_root,
185
+ ann_file='annotations/instances_val2017.json',
186
+ data_prefix=dict(img='val2017/'),
187
+ test_mode=True,
188
+ pipeline=test_pipeline,
189
+ backend_args=backend_args))
190
+ test_dataloader = val_dataloader
191
+
192
+ val_evaluator = dict(
193
+ type='CocoMetric',
194
+ ann_file=data_root + 'annotations/instances_val2017.json',
195
+ metric='bbox',
196
+ format_only=False,
197
+ backend_args=backend_args)
198
+ test_evaluator = val_evaluator