oneScotch commited on
Commit
bcd4eea
·
1 Parent(s): c24cd83

fix minor issue when changing to python 3.9

Browse files
Files changed (1) hide show
  1. app.py +134 -134
app.py CHANGED
@@ -1,134 +1,134 @@
1
- import os
2
- import sys
3
- import os.path as osp
4
- from pathlib import Path
5
- import cv2
6
- import gradio as gr
7
- import torch
8
- import math
9
- import spaces
10
-
11
- try:
12
- import mmpose
13
- except:
14
- os.system('pip install /home/user/app/main/transformer_utils')
15
-
16
- os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.8.18/lib/python3.8/site-packages/torchgeometry/core/conversions.py')
17
- DEFAULT_MODEL='smpler_x_h32'
18
- OUT_FOLDER = '/home/user/app/demo_out'
19
- os.makedirs(OUT_FOLDER, exist_ok=True)
20
- num_gpus = 1 if torch.cuda.is_available() else -1
21
- print("!!!", torch.cuda.is_available())
22
- print(torch.cuda.device_count())
23
- print(torch.version.cuda)
24
- index = torch.cuda.current_device()
25
- print(index)
26
- print(torch.cuda.get_device_name(index))
27
- from main.inference import Inferer
28
- inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
29
-
30
- @spaces.GPU(enable_queue=True)
31
- def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
32
- os.system(f'rm -rf {OUT_FOLDER}/*')
33
- multi_person = False if (num_people == "Single person") else True
34
- cap = cv2.VideoCapture(video_input)
35
- fps = math.ceil(cap.get(5))
36
- width = int(cap.get(3))
37
- height = int(cap.get(4))
38
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
39
- video_path = osp.join(OUT_FOLDER, f'out.m4v')
40
- final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
41
- video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
42
- success = 1
43
- frame = 0
44
- while success:
45
- success, original_img = cap.read()
46
- if not success:
47
- break
48
- frame += 1
49
- img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
50
- video_output.write(img)
51
- yield img, None, None, None
52
- cap.release()
53
- video_output.release()
54
- cv2.destroyAllWindows()
55
- os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
56
-
57
- #Compress mesh and smplx files
58
- save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
59
- save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
60
- os.makedirs(save_path_mesh, exist_ok= True)
61
- save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
62
- save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
63
- os.makedirs(save_path_smplx, exist_ok= True)
64
- os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
65
- os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
66
- yield img, video_path, save_mesh_file, save_smplx_file
67
-
68
- TITLE = '''<h1 align="center">SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</h1>'''
69
- VIDEO = '''
70
- <center><iframe width="960" height="540"
71
- src="https://www.youtube.com/embed/DepTqbPpVzY?si=qSeQuX-bgm_rON7E"title="SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen>
72
- </iframe>
73
- </center><br>'''
74
- DESCRIPTION = '''
75
- <b>Official Gradio demo</b> for <a href="https://caizhongang.com/projects/SMPLer-X/"><b>SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</b></a>.<br>
76
- <p>
77
- Note: You can drop a video at the panel (or select one of the examples)
78
- to obtain the 3D parametric reconstructions of the detected humans.
79
- </p>
80
- '''
81
-
82
- with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
83
-
84
- gr.Markdown(TITLE)
85
- gr.HTML(VIDEO)
86
- gr.Markdown(DESCRIPTION)
87
-
88
- with gr.Row():
89
- with gr.Column():
90
- video_input = gr.Video(label="Input video", elem_classes="video")
91
- threshold = gr.Slider(0, 1.0, value=0.5, label='BBox detection threshold')
92
- with gr.Column(scale=2):
93
- num_people = gr.Radio(
94
- choices=["Single person", "Multiple people"],
95
- value="Single person",
96
- label="Number of people",
97
- info="Choose how many people are there in the video. Choose 'single person' for faster inference.",
98
- interactive=True,
99
- scale=1,)
100
- gr.HTML("""<br/>""")
101
- mesh_as_vertices = gr.Checkbox(
102
- label="Render as mesh",
103
- info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
104
- interactive=True,
105
- scale=1,)
106
-
107
- send_button = gr.Button("Infer")
108
- gr.HTML("""<br/>""")
109
-
110
- with gr.Row():
111
- with gr.Column():
112
- processed_frames = gr.Image(label="Last processed frame")
113
- video_output = gr.Video(elem_classes="video")
114
- with gr.Column():
115
- meshes_output = gr.File(label="3D meshes")
116
- smplx_output = gr.File(label= "SMPL-X models")
117
- # example_images = gr.Examples([])
118
- send_button.click(fn=infer, inputs=[video_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, video_output, meshes_output, smplx_output])
119
- # with gr.Row():
120
- example_videos = gr.Examples([
121
- ['/home/user/app/assets/01.mp4'],
122
- ['/home/user/app/assets/02.mp4'],
123
- ['/home/user/app/assets/03.mp4'],
124
- ['/home/user/app/assets/04.mp4'],
125
- ['/home/user/app/assets/05.mp4'],
126
- ['/home/user/app/assets/06.mp4'],
127
- ['/home/user/app/assets/07.mp4'],
128
- ['/home/user/app/assets/08.mp4'],
129
- ['/home/user/app/assets/09.mp4'],
130
- ],
131
- inputs=[video_input, 0.5])
132
-
133
- #demo.queue()
134
- demo.queue().launch(debug=True)
 
1
+ import os
2
+ import sys
3
+ import os.path as osp
4
+ from pathlib import Path
5
+ import cv2
6
+ import gradio as gr
7
+ import torch
8
+ import math
9
+ import spaces
10
+
11
+ try:
12
+ import mmpose
13
+ except:
14
+ os.system('pip install /home/user/app/main/transformer_utils')
15
+
16
+ os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
17
+ DEFAULT_MODEL='smpler_x_h32'
18
+ OUT_FOLDER = '/home/user/app/demo_out'
19
+ os.makedirs(OUT_FOLDER, exist_ok=True)
20
+ num_gpus = 1 if torch.cuda.is_available() else -1
21
+ print("!!!", torch.cuda.is_available())
22
+ print(torch.cuda.device_count())
23
+ print(torch.version.cuda)
24
+ index = torch.cuda.current_device()
25
+ print(index)
26
+ print(torch.cuda.get_device_name(index))
27
+ from main.inference import Inferer
28
+ inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
29
+
30
+ @spaces.GPU(enable_queue=True)
31
+ def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
32
+ os.system(f'rm -rf {OUT_FOLDER}/*')
33
+ multi_person = False if (num_people == "Single person") else True
34
+ cap = cv2.VideoCapture(video_input)
35
+ fps = math.ceil(cap.get(5))
36
+ width = int(cap.get(3))
37
+ height = int(cap.get(4))
38
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
39
+ video_path = osp.join(OUT_FOLDER, f'out.m4v')
40
+ final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
41
+ video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
42
+ success = 1
43
+ frame = 0
44
+ while success:
45
+ success, original_img = cap.read()
46
+ if not success:
47
+ break
48
+ frame += 1
49
+ img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
50
+ video_output.write(img)
51
+ yield img, None, None, None
52
+ cap.release()
53
+ video_output.release()
54
+ cv2.destroyAllWindows()
55
+ os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
56
+
57
+ #Compress mesh and smplx files
58
+ save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
59
+ save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
60
+ os.makedirs(save_path_mesh, exist_ok= True)
61
+ save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
62
+ save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
63
+ os.makedirs(save_path_smplx, exist_ok= True)
64
+ os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
65
+ os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
66
+ yield img, video_path, save_mesh_file, save_smplx_file
67
+
68
+ TITLE = '''<h1 align="center">SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</h1>'''
69
+ VIDEO = '''
70
+ <center><iframe width="960" height="540"
71
+ src="https://www.youtube.com/embed/DepTqbPpVzY?si=qSeQuX-bgm_rON7E"title="SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen>
72
+ </iframe>
73
+ </center><br>'''
74
+ DESCRIPTION = '''
75
+ <b>Official Gradio demo</b> for <a href="https://caizhongang.com/projects/SMPLer-X/"><b>SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</b></a>.<br>
76
+ <p>
77
+ Note: You can drop a video at the panel (or select one of the examples)
78
+ to obtain the 3D parametric reconstructions of the detected humans.
79
+ </p>
80
+ '''
81
+
82
+ with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
83
+
84
+ gr.Markdown(TITLE)
85
+ gr.HTML(VIDEO)
86
+ gr.Markdown(DESCRIPTION)
87
+
88
+ with gr.Row():
89
+ with gr.Column():
90
+ video_input = gr.Video(label="Input video", elem_classes="video")
91
+ threshold = gr.Slider(0, 1.0, value=0.5, label='BBox detection threshold')
92
+ with gr.Column(scale=2):
93
+ num_people = gr.Radio(
94
+ choices=["Single person", "Multiple people"],
95
+ value="Single person",
96
+ label="Number of people",
97
+ info="Choose how many people are there in the video. Choose 'single person' for faster inference.",
98
+ interactive=True,
99
+ scale=1,)
100
+ gr.HTML("""<br/>""")
101
+ mesh_as_vertices = gr.Checkbox(
102
+ label="Render as mesh",
103
+ info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
104
+ interactive=True,
105
+ scale=1,)
106
+
107
+ send_button = gr.Button("Infer")
108
+ gr.HTML("""<br/>""")
109
+
110
+ with gr.Row():
111
+ with gr.Column():
112
+ processed_frames = gr.Image(label="Last processed frame")
113
+ video_output = gr.Video(elem_classes="video")
114
+ with gr.Column():
115
+ meshes_output = gr.File(label="3D meshes")
116
+ smplx_output = gr.File(label= "SMPL-X models")
117
+ # example_images = gr.Examples([])
118
+ send_button.click(fn=infer, inputs=[video_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, video_output, meshes_output, smplx_output])
119
+ # with gr.Row():
120
+ example_videos = gr.Examples([
121
+ ['/home/user/app/assets/01.mp4'],
122
+ ['/home/user/app/assets/02.mp4'],
123
+ ['/home/user/app/assets/03.mp4'],
124
+ ['/home/user/app/assets/04.mp4'],
125
+ ['/home/user/app/assets/05.mp4'],
126
+ ['/home/user/app/assets/06.mp4'],
127
+ ['/home/user/app/assets/07.mp4'],
128
+ ['/home/user/app/assets/08.mp4'],
129
+ ['/home/user/app/assets/09.mp4'],
130
+ ],
131
+ inputs=[video_input, 0.5])
132
+
133
+ #demo.queue()
134
+ demo.queue().launch(debug=True)