Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,886 @@
|
|
1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
|
7 |
+
# Install spaCy model
|
8 |
+
os.system("python -m spacy download en_core_web_sm")
|
9 |
+
|
10 |
+
def process_tweets(files, reset_processing=False):
|
11 |
+
# Save uploaded files
|
12 |
+
file_paths = []
|
13 |
+
for file in files:
|
14 |
+
if file.name.endswith('.csv'):
|
15 |
+
# Ensure directory exists
|
16 |
+
os.makedirs("projects_twitter_post", exist_ok=True)
|
17 |
+
|
18 |
+
# Save file to the directory
|
19 |
+
dest_path = f"projects_twitter_post/{os.path.basename(file.name)}"
|
20 |
+
os.system(f"cp {file.name} {dest_path}")
|
21 |
+
file_paths.append(dest_path)
|
22 |
+
|
23 |
+
if not file_paths:
|
24 |
+
return "No CSV files uploaded. Please upload CSV files containing tweet data."
|
25 |
+
|
26 |
+
# Run the processing script
|
27 |
+
reset_flag = "--reset" if reset_processing else ""
|
28 |
+
result = subprocess.run(
|
29 |
+
f"python process_tweet_huggingface.py {reset_flag}",
|
30 |
+
shell=True,
|
31 |
+
capture_output=True,
|
32 |
+
text=True
|
33 |
+
)
|
34 |
+
|
35 |
+
# Check if output files were created
|
36 |
+
output_files = []
|
37 |
+
for file_path in file_paths:
|
38 |
+
base_name = os.path.basename(file_path).replace('.csv', '')
|
39 |
+
processed_path = f"projects_twitter_post/{base_name}_processed.csv"
|
40 |
+
analysis_path = f"projects_twitter_post/{base_name}_analysis.csv"
|
41 |
+
|
42 |
+
if os.path.exists(processed_path):
|
43 |
+
output_files.append(processed_path)
|
44 |
+
if os.path.exists(analysis_path):
|
45 |
+
output_files.append(analysis_path)
|
46 |
+
|
47 |
+
return_files = [f for f in output_files if os.path.exists(f)]
|
48 |
+
|
49 |
+
log_output = result.stdout + "\n" + result.stderr
|
50 |
+
|
51 |
+
return log_output, return_files
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown("# Crypto Tweet Processor")
|
55 |
+
gr.Markdown("Upload CSV files containing tweet data to process")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
files_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
59 |
+
reset_checkbox = gr.Checkbox(label="Reset Processing", value=False)
|
60 |
+
|
61 |
+
process_btn = gr.Button("Process Tweets")
|
62 |
+
|
63 |
+
output_text = gr.Textbox(label="Processing Log")
|
64 |
+
output_files = gr.File(label="Processed Files", file_count="multiple")
|
65 |
+
|
66 |
+
process_btn.click(
|
67 |
+
process_tweets,
|
68 |
+
inputs=[files_input, reset_checkbox],
|
69 |
+
outputs=[output_text, output_files]
|
70 |
+
)
|
71 |
+
|
72 |
+
# Add the modified processing script code here
|
73 |
+
with open("process_tweet_huggingface.py", "w") as f:
|
74 |
+
f.write(#!/usr/bin/env python3
|
75 |
+
"""
|
76 |
+
Tweet Processing Script for Google Colab - Enhanced with NLP and Sentiment Analysis
|
77 |
+
This version is optimized for Google Colab with GPU acceleration and Google Drive integration.
|
78 |
+
"""
|
79 |
|
80 |
+
import os
|
81 |
+
import re
|
82 |
+
import json
|
83 |
+
import pandas as pd
|
84 |
+
import numpy as np
|
85 |
+
import torch
|
86 |
+
import math
|
87 |
+
import gc
|
88 |
+
from tqdm import tqdm
|
89 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
|
90 |
+
import spacy
|
91 |
|
92 |
+
# ==============================================
|
93 |
+
# COLAB SETUP - Run these cells first in Colab
|
94 |
+
# ==============================================
|
95 |
+
|
96 |
+
# Uncomment and run this cell to mount your Google Drive
|
97 |
+
"""
|
98 |
+
from google.colab import drive
|
99 |
+
drive.mount('/content/drive')
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Uncomment and run this cell to install required packages
|
103 |
+
"""
|
104 |
+
!pip install pandas tqdm transformers spacy
|
105 |
+
!python -m spacy download en_core_web_sm
|
106 |
+
"""
|
107 |
+
|
108 |
+
# Uncomment and run this cell to verify GPU availability
|
109 |
+
"""
|
110 |
+
import torch
|
111 |
+
print(f"GPU available: {torch.cuda.is_available()}")
|
112 |
+
print(f"GPU device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
|
113 |
+
"""
|
114 |
+
|
115 |
+
# ==============================================
|
116 |
+
# Constants - Update these paths for your setup
|
117 |
+
# ==============================================
|
118 |
+
|
119 |
+
# Update this to your Google Drive path
|
120 |
+
DRIVE_PATH = "./projects_twitter_post"
|
121 |
+
OUTPUT_FOLDER = f"{DRIVE_PATH}"
|
122 |
+
CHECKPOINT_FILE = f"{OUTPUT_FOLDER}/processing_checkpoint.json"
|
123 |
+
BATCH_SIZE = 500 # Reduced batch size for GPU memory management
|
124 |
+
|
125 |
+
# Create output folder if it doesn't exist
|
126 |
+
if not os.path.exists(OUTPUT_FOLDER):
|
127 |
+
os.makedirs(OUTPUT_FOLDER)
|
128 |
+
|
129 |
+
# ==============================================
|
130 |
+
# Model Initialization with GPU Acceleration
|
131 |
+
# ==============================================
|
132 |
+
|
133 |
+
print("Loading RoBERTa model...")
|
134 |
+
model_name = "roberta-base"
|
135 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
136 |
+
print(f"Using device: {device}")
|
137 |
+
|
138 |
+
# Initialize with GPU acceleration
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
140 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name).to(device)
|
141 |
+
nlp_pipeline = pipeline("fill-mask", model=model_name, device=0 if torch.cuda.is_available() else -1)
|
142 |
+
|
143 |
+
# Initialize sentiment analysis pipeline
|
144 |
+
print("Loading sentiment analysis model...")
|
145 |
+
try:
|
146 |
+
# Using a Twitter-specific sentiment model for better results on social media text
|
147 |
+
sentiment_model = "cardiffnlp/twitter-roberta-base-sentiment"
|
148 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=sentiment_model, device=0 if torch.cuda.is_available() else -1)
|
149 |
+
SENTIMENT_AVAILABLE = True
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Error loading sentiment model: {e}")
|
152 |
+
# Fallback to a simpler sentiment model if the Twitter-specific one fails
|
153 |
+
try:
|
154 |
+
sentiment_pipeline = pipeline("sentiment-analysis", device=0 if torch.cuda.is_available() else -1)
|
155 |
+
SENTIMENT_AVAILABLE = True
|
156 |
+
except:
|
157 |
+
print("Sentiment analysis not available. Continuing without sentiment analysis.")
|
158 |
+
SENTIMENT_AVAILABLE = False
|
159 |
+
|
160 |
+
# Try to load spaCy for basic text preprocessing
|
161 |
+
try:
|
162 |
+
import spacy
|
163 |
+
spacy_nlp = spacy.load("en_core_web_sm")
|
164 |
+
SPACY_AVAILABLE = True
|
165 |
+
except:
|
166 |
+
SPACY_AVAILABLE = False
|
167 |
+
print("SpaCy not available. Using basic text processing instead.")
|
168 |
+
|
169 |
+
# Crypto-specific keywords with hierarchical categories
|
170 |
+
CRYPTO_TAXONOMY = {
|
171 |
+
"COIN": {
|
172 |
+
"MAJOR": [
|
173 |
+
"bitcoin", "ethereum", "btc", "eth", "bnb", "xrp", "sol", "doge",
|
174 |
+
"cardano", "polkadot", "dot", "avalanche", "avax", "solana", "polygon", "matic"
|
175 |
+
],
|
176 |
+
"STABLECOIN": [
|
177 |
+
"tether", "usdt", "usdc", "busd", "dai", "frax", "tusd", "usdd", "lusd", "gusd", "husd"
|
178 |
+
],
|
179 |
+
"ALTCOIN": [
|
180 |
+
"litecoin", "ltc", "chainlink", "link", "stellar", "xlm", "dogecoin", "shib",
|
181 |
+
"tron", "trx", "cosmos", "atom", "near", "algo", "fantom", "ftm", "monero", "xmr"
|
182 |
+
],
|
183 |
+
"DEFI": [
|
184 |
+
"uniswap", "uni", "aave", "sushi", "cake", "comp", "maker", "mkr", "curve", "crv",
|
185 |
+
"yearn", "yfi", "compound", "balancer", "bal", "synthetix", "snx"
|
186 |
+
],
|
187 |
+
"UTILITY": [
|
188 |
+
"filecoin", "fil", "the graph", "grt", "arweave", "ar", "chainlink", "link",
|
189 |
+
"helium", "hnt", "theta", "icp"
|
190 |
+
],
|
191 |
+
"NFT": [
|
192 |
+
"enjin", "enj", "decentraland", "mana", "sandbox", "sand", "axie", "axs",
|
193 |
+
"gala", "apecoin", "ape", "flow", "ens", "stepn", "gmt"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
|
197 |
+
"TECH": {
|
198 |
+
"CONCEPTS": [
|
199 |
+
"blockchain", "defi", "nft", "dao", "smart contract", "web3", "dapp", "protocol",
|
200 |
+
"consensus", "tokenomics", "tokenization"
|
201 |
+
],
|
202 |
+
"CHAIN_TYPES": [
|
203 |
+
"layer1", "layer2", "rollup", "sidechain", "mainnet", "testnet", "devnet",
|
204 |
+
"pow", "pos", "poh", "pbft", "dpos"
|
205 |
+
],
|
206 |
+
"PRIVACY": [
|
207 |
+
"zk", "zk-rollups", "zero-knowledge", "zkp", "zksnark", "zkstark", "mpc",
|
208 |
+
"privacy", "private", "anonymous", "confidential", "encrypted"
|
209 |
+
],
|
210 |
+
"SECTORS": [
|
211 |
+
"defi", "cefi", "gamefi", "metaverse", "socialfi", "fintech", "realfi",
|
212 |
+
"play-to-earn", "move-to-earn", "learn-to-earn", "x-to-earn", "defai", "depin", "desci",
|
213 |
+
"refi", "did", "dedata", "dedao", "deid", "deai", "degov", "decloud", "dehealth",
|
214 |
+
"decex", "deinsurance", "deworkplace", "public goods", "zk", "ordinals", "soulbound",
|
215 |
+
"onchain gaming", "ai agents", "infrastructure", "credentials", "restaking", "modular blockchain",
|
216 |
+
"liquid staking", "real world assets", "rwa", "synthetic assets", "account abstraction"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
|
220 |
+
"ACTION": {
|
221 |
+
"TRADING": [
|
222 |
+
"buy", "sell", "long", "short", "margin", "leverage", "trade", "swap",
|
223 |
+
"arbitrage", "dca", "ape", "pump", "dump", "moon", "ath", "atl", "breakout",
|
224 |
+
"correction", "consolidation", "accumulate", "distribute", "front run", "front runner",
|
225 |
+
"front running", "mev", "sandwich attack"
|
226 |
+
],
|
227 |
+
"DEFI": [
|
228 |
+
"stake", "yield", "farm", "lend", "borrow", "supply", "withdraw", "claim",
|
229 |
+
"harvest", "flash loan", "liquidate", "collateralize", "wrap", "unwrap", "bridge",
|
230 |
+
"provide liquidity", "withdraw liquidity", "impermanent loss"
|
231 |
+
],
|
232 |
+
"GOVERNANCE": [
|
233 |
+
"delegate", "vote", "propose", "governance", "dao", "snapshot", "quorum",
|
234 |
+
"execution", "timelock", "veto"
|
235 |
+
],
|
236 |
+
"NFT": [
|
237 |
+
"mint", "airdrop", "whitelist", "burn", "floor price", "rarity", "trait", "pfp",
|
238 |
+
"collection", "secondary", "flip"
|
239 |
+
],
|
240 |
+
"DEVELOPMENT": [
|
241 |
+
"deploy", "audit", "fork", "bootstrap", "initiate", "merge", "split",
|
242 |
+
"rebase", "optimize", "gas optimization", "implement", "compile"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
|
246 |
+
"PLATFORM": {
|
247 |
+
"EXCHANGE": [
|
248 |
+
"coinbase", "binance", "kraken", "kucoin", "ftx", "okx", "bybit", "bitfinex",
|
249 |
+
"huobi", "gate", "gemini", "bitstamp", "bittrex", "crypto.com", "cex", "dex"
|
250 |
+
],
|
251 |
+
"WALLET": [
|
252 |
+
"metamask", "phantom", "trust wallet", "ledger", "trezor", "argent", "rainbow",
|
253 |
+
"wallet", "hot wallet", "cold storage", "hardware wallet", "seed phrase"
|
254 |
+
],
|
255 |
+
"NFT_MARKET": [
|
256 |
+
"opensea", "rarible", "foundation", "superrare", "looksrare", "blur", "magic eden",
|
257 |
+
"nifty gateway", "zora", "x2y2", "element"
|
258 |
+
],
|
259 |
+
"INFRA": [
|
260 |
+
"alchemy", "infura", "moralis", "quicknode", "ceramic", "arweave", "ipfs",
|
261 |
+
"node", "rpc", "api", "indexer", "subgraph"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
|
265 |
+
"NETWORK": {
|
266 |
+
"LAYER1": [
|
267 |
+
"ethereum", "bitcoin", "solana", "avalanche", "polygon", "bnb chain", "bsc",
|
268 |
+
"cardano", "polkadot", "cosmos", "algorand", "tezos", "flow", "near", "tron"
|
269 |
+
],
|
270 |
+
"LAYER2": [
|
271 |
+
"arbitrum", "optimism", "zksync", "starknet", "base", "polygon", "loopring",
|
272 |
+
"immutablex", "metis", "boba", "aztec", "validium", "zkevm"
|
273 |
+
],
|
274 |
+
"INTEROPERABILITY": [
|
275 |
+
"cosmos", "polkadot", "kusama", "moonbeam", "moonriver", "parachains", "relay chain",
|
276 |
+
"ibc", "cross-chain", "bridge"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
|
280 |
+
"EVENTS": {
|
281 |
+
"MARKET": [
|
282 |
+
"bull market", "bear market", "bull run", "bear trap", "bull trap", "halving",
|
283 |
+
"capitulation", "golden cross", "death cross", "breakout", "resistance", "support"
|
284 |
+
],
|
285 |
+
"SECURITY": [
|
286 |
+
"hack", "exploit", "vulnerability", "scam", "phishing", "rug pull", "honeypot",
|
287 |
+
"flash crash", "attack", "51% attack", "front running", "sandwich attack", "mev extraction"
|
288 |
+
],
|
289 |
+
"TOKEN_EVENTS": [
|
290 |
+
"airdrop", "token unlock", "vesting", "ico", "ido", "ito", "ieo", "fair launch",
|
291 |
+
"private sale", "seed round", "listing", "delisting"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
|
295 |
+
"METRICS": {
|
296 |
+
"FINANCIAL": [
|
297 |
+
"apy", "apr", "roi", "tvl", "market cap", "mcap", "volume", "liquidity", "supply",
|
298 |
+
"circulating supply", "total supply", "max supply", "inflation", "deflation",
|
299 |
+
"volatility", "dominance"
|
300 |
+
],
|
301 |
+
"TECHNICAL": [
|
302 |
+
"gas fee", "gas price", "gas limit", "slippage", "impermanent loss", "yield",
|
303 |
+
"hashrate", "difficulty", "tps", "latency", "finality", "block time", "block size",
|
304 |
+
"block reward"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
|
308 |
+
"COMMUNITY": {
|
309 |
+
"ROLES": [
|
310 |
+
"whale", "degen", "anon", "influencer", "kol", "thought leader", "ambassador",
|
311 |
+
"advocate", "og", "contributor", "dev", "builder", "founder", "investor", "vc",
|
312 |
+
"angel", "team", "core team", "front runner", "mev bot", "searcher", "validator",
|
313 |
+
"miner", "node operator", "liquidity provider", "market maker", "arbitrageur"
|
314 |
+
],
|
315 |
+
"SLANG": [
|
316 |
+
"diamond hands", "paper hands", "wagmi", "ngmi", "gm", "gn", "ser", "based",
|
317 |
+
"crypto twitter", "ct", "alpha", "dyor", "fomo", "fud", "hodl", "rekt"
|
318 |
+
]
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
# ==============================================
|
323 |
+
# Helper Functions
|
324 |
+
# ==============================================
|
325 |
+
|
326 |
+
def clear_gpu_memory():
|
327 |
+
"""Clear GPU memory to prevent OOM errors"""
|
328 |
+
if torch.cuda.is_available():
|
329 |
+
torch.cuda.empty_cache()
|
330 |
+
gc.collect()
|
331 |
+
|
332 |
+
def load_checkpoint():
|
333 |
+
"""Load processing checkpoint if it exists"""
|
334 |
+
if os.path.exists(CHECKPOINT_FILE):
|
335 |
+
with open(CHECKPOINT_FILE, 'r') as f:
|
336 |
+
return json.load(f)
|
337 |
+
return {'last_processed_index': 0}
|
338 |
+
|
339 |
+
def save_checkpoint(index):
|
340 |
+
"""Save the current processing index to a checkpoint file"""
|
341 |
+
with open(CHECKPOINT_FILE, 'w') as f:
|
342 |
+
json.dump({'last_processed_index': index}, f)
|
343 |
+
|
344 |
+
def identify_crypto_entities(text: str) -> list:
|
345 |
+
"""
|
346 |
+
Identify crypto-specific entities in text using the hierarchical taxonomy.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
text (str): Text to analyze
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
list: List of tuples (entity, main_category, sub_category)
|
353 |
+
"""
|
354 |
+
if not isinstance(text, str):
|
355 |
+
return []
|
356 |
+
|
357 |
+
text_lower = text.lower()
|
358 |
+
found_entities = []
|
359 |
+
|
360 |
+
# Search for each entity in the taxonomy
|
361 |
+
for main_cat, subcats in CRYPTO_TAXONOMY.items():
|
362 |
+
for subcat, terms in subcats.items():
|
363 |
+
for term in terms:
|
364 |
+
# Avoid matching partial words (ensure word boundaries)
|
365 |
+
pattern = r'\b' + re.escape(term) + r'\b'
|
366 |
+
if re.search(pattern, text_lower):
|
367 |
+
found_entities.append((term, main_cat, subcat))
|
368 |
+
|
369 |
+
return found_entities
|
370 |
+
|
371 |
+
def clean_text(text: str) -> str:
|
372 |
+
"""Clean text while preserving mentions and hashtags"""
|
373 |
+
if not isinstance(text, str):
|
374 |
+
return ""
|
375 |
+
|
376 |
+
# Remove URLs
|
377 |
+
text = re.sub(r'http\S+', '', text)
|
378 |
+
|
379 |
+
# Remove non-alphanumeric characters (except mentions, hashtags, and spaces)
|
380 |
+
text = re.sub(r'[^\w\s@#]', ' ', text)
|
381 |
+
|
382 |
+
# Remove extra whitespace
|
383 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
384 |
+
|
385 |
+
return text.lower()
|
386 |
+
|
387 |
+
def process_nlp_text(text: str) -> str:
|
388 |
+
"""Process text with advanced NLP (lemmatization, stopword removal)"""
|
389 |
+
if not isinstance(text, str):
|
390 |
+
return ""
|
391 |
+
|
392 |
+
# Basic cleaning
|
393 |
+
text = clean_text(text)
|
394 |
+
|
395 |
+
if SPACY_AVAILABLE:
|
396 |
+
# Process with spaCy for advanced NLP
|
397 |
+
doc = spacy_nlp(text)
|
398 |
+
|
399 |
+
# Lemmatize and remove stopwords
|
400 |
+
processed_tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct]
|
401 |
+
|
402 |
+
return " ".join(processed_tokens)
|
403 |
+
else:
|
404 |
+
# Fallback to basic cleaning if spaCy is not available
|
405 |
+
return text
|
406 |
+
|
407 |
+
def extract_mentions(text: str) -> list:
|
408 |
+
"""Extract @mentions from text"""
|
409 |
+
if not isinstance(text, str):
|
410 |
+
return []
|
411 |
+
return re.findall(r'@(\w+)', text)
|
412 |
+
|
413 |
+
def extract_hashtags(text: str) -> list:
|
414 |
+
"""Extract #hashtags from text"""
|
415 |
+
if not isinstance(text, str):
|
416 |
+
return []
|
417 |
+
return re.findall(r'#(\w+)', text)
|
418 |
+
|
419 |
+
def extract_urls(text: str) -> list:
|
420 |
+
"""Extract URLs from text"""
|
421 |
+
if not isinstance(text, str):
|
422 |
+
return []
|
423 |
+
urls = re.findall(r'(https?://\S+)', text)
|
424 |
+
return urls
|
425 |
+
|
426 |
+
def analyze_sentiment(text: str) -> dict:
|
427 |
+
"""
|
428 |
+
Analyze the sentiment of a text using the sentiment analysis pipeline.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
text (str): The text to analyze
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
dict: A dictionary containing sentiment label and score
|
435 |
+
"""
|
436 |
+
if not SENTIMENT_AVAILABLE or not text.strip():
|
437 |
+
return {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
|
438 |
+
|
439 |
+
try:
|
440 |
+
# Pre-process the text to improve sentiment analysis accuracy
|
441 |
+
# Limit text length to avoid errors with very long tweets
|
442 |
+
truncated_text = text[:512] if len(text) > 512 else text
|
443 |
+
|
444 |
+
# Get sentiment prediction
|
445 |
+
sentiment_result = sentiment_pipeline(truncated_text)[0]
|
446 |
+
label = sentiment_result['label']
|
447 |
+
score = sentiment_result['score']
|
448 |
+
|
449 |
+
# Map to standardized format (positive, negative, neutral)
|
450 |
+
sentiment_mapping = {
|
451 |
+
'LABEL_0': 'negative',
|
452 |
+
'LABEL_1': 'neutral',
|
453 |
+
'LABEL_2': 'positive',
|
454 |
+
'NEGATIVE': 'negative',
|
455 |
+
'NEUTRAL': 'neutral',
|
456 |
+
'POSITIVE': 'positive'
|
457 |
+
}
|
458 |
+
|
459 |
+
standardized_sentiment = sentiment_mapping.get(label, label.lower())
|
460 |
+
|
461 |
+
# Calculate magnitude (confidence) - useful for filtering high-confidence sentiments
|
462 |
+
magnitude = abs(score - 0.5) * 2 if standardized_sentiment != 'neutral' else score
|
463 |
+
|
464 |
+
return {
|
465 |
+
"sentiment": standardized_sentiment,
|
466 |
+
"sentiment_score": score,
|
467 |
+
"sentiment_magnitude": magnitude
|
468 |
+
}
|
469 |
+
except Exception as e:
|
470 |
+
print(f"Error in sentiment analysis: {e}")
|
471 |
+
return {"sentiment": "error", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
|
472 |
+
|
473 |
+
def process_with_nlp(text: str) -> dict:
|
474 |
+
"""
|
475 |
+
Process text with NLP to extract named entities, key phrases, etc.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
text (str): The text to process
|
479 |
+
|
480 |
+
Returns:
|
481 |
+
dict: A dictionary containing NLP processing results
|
482 |
+
"""
|
483 |
+
results = {
|
484 |
+
"named_entities": [],
|
485 |
+
"pos_tags": [],
|
486 |
+
"lemmatized_tokens": [],
|
487 |
+
"key_phrases": [],
|
488 |
+
"important_nouns": [],
|
489 |
+
"sentiment_analysis": {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
|
490 |
+
}
|
491 |
+
|
492 |
+
if not text or text.isspace():
|
493 |
+
return results
|
494 |
+
|
495 |
+
# First, analyze sentiment
|
496 |
+
results["sentiment_analysis"] = analyze_sentiment(text)
|
497 |
+
|
498 |
+
try:
|
499 |
+
# Use spaCy for advanced NLP if available
|
500 |
+
if SPACY_AVAILABLE:
|
501 |
+
doc = spacy_nlp(text)
|
502 |
+
|
503 |
+
# Extract named entities (excluding crypto entities which are handled separately)
|
504 |
+
results["named_entities"] = [(ent.text, ent.label_) for ent in doc.ents]
|
505 |
+
|
506 |
+
# Extract POS tags for content words
|
507 |
+
results["pos_tags"] = [(token.text, token.pos_) for token in doc
|
508 |
+
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"] and not token.is_stop]
|
509 |
+
|
510 |
+
# Get lemmatized tokens (normalized words)
|
511 |
+
results["lemmatized_tokens"] = [token.lemma_ for token in doc
|
512 |
+
if not token.is_stop and not token.is_punct and token.text.strip()]
|
513 |
+
|
514 |
+
# Extract important nouns (potential topics)
|
515 |
+
results["important_nouns"] = [token.text for token in doc
|
516 |
+
if token.pos_ == "NOUN" and not token.is_stop]
|
517 |
+
|
518 |
+
# Try to extract key phrases using noun chunks
|
519 |
+
results["key_phrases"] = [chunk.text for chunk in doc.noun_chunks
|
520 |
+
if len(chunk.text.split()) > 1]
|
521 |
+
|
522 |
+
# If key phrases are empty, use RoBERTa to attempt extraction
|
523 |
+
if not results["key_phrases"] and len(text.split()) > 3:
|
524 |
+
try:
|
525 |
+
# Create a masked sentence from the text
|
526 |
+
words = text.split()
|
527 |
+
if len(words) > 5:
|
528 |
+
# Get 3 random positions to mask
|
529 |
+
import random
|
530 |
+
positions = sorted(random.sample(range(len(words)), min(3, len(words))))
|
531 |
+
|
532 |
+
# Create masked sentences
|
533 |
+
key_terms = []
|
534 |
+
for pos in positions:
|
535 |
+
words_copy = words.copy()
|
536 |
+
words_copy[pos] = tokenizer.mask_token
|
537 |
+
masked_text = " ".join(words_copy)
|
538 |
+
|
539 |
+
# Get predictions for the masked token
|
540 |
+
predictions = nlp_pipeline(masked_text, top_k=2)
|
541 |
+
for prediction in predictions:
|
542 |
+
key_terms.append(prediction["token_str"].strip())
|
543 |
+
|
544 |
+
results["key_phrases"].extend(key_terms)
|
545 |
+
except Exception as e:
|
546 |
+
print(f"Error in key phrase extraction: {e}")
|
547 |
+
|
548 |
+
# Ensure all results are strings for CSV output
|
549 |
+
results["named_entities"] = ";".join([f"{ent[0]}:{ent[1]}" for ent in results["named_entities"]])
|
550 |
+
results["pos_tags"] = ";".join([f"{tag[0]}:{tag[1]}" for tag in results["pos_tags"]])
|
551 |
+
results["lemmatized_tokens"] = ";".join(results["lemmatized_tokens"])
|
552 |
+
results["key_phrases"] = ";".join(list(set(results["key_phrases"]))) # Remove duplicates
|
553 |
+
results["important_nouns"] = ";".join(list(set(results["important_nouns"]))) # Remove duplicates
|
554 |
+
|
555 |
+
except Exception as e:
|
556 |
+
print(f"Error in NLP processing: {e}")
|
557 |
+
|
558 |
+
# Clear GPU memory after processing
|
559 |
+
if (results["named_entities"].count(";") > 100) or (len(text) > 1000):
|
560 |
+
clear_gpu_memory()
|
561 |
+
|
562 |
+
return results
|
563 |
+
|
564 |
+
def process_tweet(text: str) -> tuple:
|
565 |
+
"""
|
566 |
+
Process a tweet to extract mentions, hashtags, URLs, crypto entities, and perform NLP analysis.
|
567 |
+
Also performs sentiment analysis.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
text (str): The tweet text to process
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
tuple: A tuple containing mentions, hashtags, URLs, NLP results, and sentiment analysis
|
574 |
+
"""
|
575 |
+
if not text or not isinstance(text, str):
|
576 |
+
return [], [], [], "", "", {}, {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
|
577 |
+
|
578 |
+
# Clean the text while preserving mentions and hashtags
|
579 |
+
cleaned_text = clean_text(text)
|
580 |
+
|
581 |
+
# Process text with NLP
|
582 |
+
processed_text = process_nlp_text(text)
|
583 |
+
|
584 |
+
# Extract mentions, hashtags, and URLs
|
585 |
+
mentions = extract_mentions(text)
|
586 |
+
hashtags = extract_hashtags(text)
|
587 |
+
urls = extract_urls(text)
|
588 |
+
|
589 |
+
# Identify crypto entities
|
590 |
+
crypto_entities = identify_crypto_entities(text)
|
591 |
+
|
592 |
+
# Process with NLP models
|
593 |
+
nlp_results = process_with_nlp(text)
|
594 |
+
|
595 |
+
# Ensure we have the sentiment analysis results
|
596 |
+
sentiment_results = nlp_results.pop("sentiment_analysis", {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0})
|
597 |
+
|
598 |
+
# Add crypto entities to the named entities
|
599 |
+
formatted_crypto_entities = [f"{entity}:{main_cat}.{sub_cat}" for entity, main_cat, sub_cat in crypto_entities]
|
600 |
+
|
601 |
+
# If named_entities is a string (joined with semicolons), we need to handle differently
|
602 |
+
if isinstance(nlp_results.get("named_entities", ""), str):
|
603 |
+
nlp_results["named_entities"] = nlp_results.get("named_entities", "")
|
604 |
+
if nlp_results["named_entities"] and formatted_crypto_entities:
|
605 |
+
nlp_results["named_entities"] += ";" + ";".join(formatted_crypto_entities)
|
606 |
+
elif formatted_crypto_entities:
|
607 |
+
nlp_results["named_entities"] = ";".join(formatted_crypto_entities)
|
608 |
+
|
609 |
+
return mentions, hashtags, urls, cleaned_text, processed_text, nlp_results, sentiment_results
|
610 |
+
|
611 |
+
def process_batch(df_batch):
|
612 |
+
"""Process a batch of tweets"""
|
613 |
+
processed_data = []
|
614 |
+
|
615 |
+
for idx, row in df_batch.iterrows():
|
616 |
+
text = row.get('text', '')
|
617 |
+
|
618 |
+
# Process the tweet
|
619 |
+
mentions, hashtags, urls, cleaned_text, processed_text, nlp_results, sentiment_results = process_tweet(text)
|
620 |
+
|
621 |
+
# Create a dictionary with the results
|
622 |
+
result = {
|
623 |
+
'id': row.get('id', ''),
|
624 |
+
'original_text': text, # Store the original text
|
625 |
+
'cleaned_text': cleaned_text,
|
626 |
+
'nlp_processed_text': processed_text,
|
627 |
+
'extracted_mentions': ';'.join(mentions),
|
628 |
+
'extracted_hashtags': ';'.join(hashtags),
|
629 |
+
'extracted_urls': ';'.join(urls),
|
630 |
+
'named_entities': nlp_results.get('named_entities', ''),
|
631 |
+
'pos_tags': nlp_results.get('pos_tags', ''),
|
632 |
+
'lemmatized_tokens': nlp_results.get('lemmatized_tokens', ''),
|
633 |
+
'key_phrases': nlp_results.get('key_phrases', ''),
|
634 |
+
'important_nouns': nlp_results.get('important_nouns', ''),
|
635 |
+
'sentiment': sentiment_results.get('sentiment', 'unknown'),
|
636 |
+
'sentiment_score': sentiment_results.get('sentiment_score', 0.0),
|
637 |
+
'sentiment_magnitude': sentiment_results.get('sentiment_magnitude', 0.0)
|
638 |
+
}
|
639 |
+
|
640 |
+
processed_data.append(result)
|
641 |
+
|
642 |
+
return pd.DataFrame(processed_data)
|
643 |
+
|
644 |
+
# ==============================================
|
645 |
+
# Main Processing Function
|
646 |
+
# ==============================================
|
647 |
+
|
648 |
+
def main(reset_checkpoint=False, input_file=None):
|
649 |
+
"""
|
650 |
+
Main function to process tweets
|
651 |
+
|
652 |
+
Args:
|
653 |
+
reset_checkpoint (bool): Whether to reset the checkpoint and process all data
|
654 |
+
input_file (str): Optional specific input file to process, otherwise processes all CSV files
|
655 |
+
"""
|
656 |
+
if reset_checkpoint and os.path.exists(CHECKPOINT_FILE):
|
657 |
+
os.remove(CHECKPOINT_FILE)
|
658 |
+
print("Checkpoint reset. Will process all data from the beginning.")
|
659 |
+
|
660 |
+
# Get list of CSV files to process
|
661 |
+
if input_file:
|
662 |
+
# Process a specific file
|
663 |
+
input_files = [input_file]
|
664 |
+
else:
|
665 |
+
# Find all CSV files in the OUTPUT_FOLDER
|
666 |
+
import glob
|
667 |
+
input_files = glob.glob(f"{OUTPUT_FOLDER}/*.csv")
|
668 |
+
|
669 |
+
# Exclude our output files
|
670 |
+
input_files = [f for f in input_files if not any(x in f for x in ["_processed.csv", "_analysis.csv"])]
|
671 |
+
|
672 |
+
if not input_files:
|
673 |
+
print(f"No input CSV files found in {OUTPUT_FOLDER}")
|
674 |
+
return
|
675 |
+
|
676 |
+
print(f"Found {len(input_files)} files to process: {[os.path.basename(f) for f in input_files]}")
|
677 |
+
|
678 |
+
# Process each file
|
679 |
+
for input_csv in input_files:
|
680 |
+
print(f"\nProcessing file: {os.path.basename(input_csv)}")
|
681 |
+
|
682 |
+
print("Loading dataset...")
|
683 |
+
# Check if input file exists
|
684 |
+
if not os.path.exists(input_csv):
|
685 |
+
print(f"Input file {input_csv} not found. Skipping.")
|
686 |
+
continue
|
687 |
+
|
688 |
+
# Load the dataset
|
689 |
+
try:
|
690 |
+
df = pd.read_csv(input_csv)
|
691 |
+
print(f"Loaded dataset with {len(df)} records and {len(df.columns)} columns.")
|
692 |
+
except Exception as e:
|
693 |
+
print(f"Error loading {input_csv}: {e}")
|
694 |
+
continue
|
695 |
+
|
696 |
+
# Load checkpoint if it exists
|
697 |
+
checkpoint = load_checkpoint()
|
698 |
+
start_idx = checkpoint['last_processed_index']
|
699 |
+
|
700 |
+
# For simplicity, reset checkpoints between files
|
701 |
+
start_idx = 0
|
702 |
+
save_checkpoint(0)
|
703 |
+
|
704 |
+
print("\nProcessing tweets...")
|
705 |
+
print(f"Starting from index {start_idx}")
|
706 |
+
|
707 |
+
# Filter to only unprocessed rows
|
708 |
+
df_to_process = df.iloc[start_idx:]
|
709 |
+
|
710 |
+
if len(df_to_process) == 0:
|
711 |
+
print("No new data to process in this file.")
|
712 |
+
continue
|
713 |
+
|
714 |
+
# Process in batches for memory efficiency
|
715 |
+
batch_size = BATCH_SIZE
|
716 |
+
num_batches = math.ceil(len(df_to_process) / batch_size)
|
717 |
+
print(f"Processing in {num_batches} batches of {batch_size} records each")
|
718 |
+
|
719 |
+
processed_batches = []
|
720 |
+
|
721 |
+
# Create progress bar
|
722 |
+
for i in tqdm(range(num_batches)):
|
723 |
+
batch_start = i * batch_size
|
724 |
+
batch_end = min((i + 1) * batch_size, len(df_to_process))
|
725 |
+
|
726 |
+
# Get current batch
|
727 |
+
df_batch = df_to_process.iloc[batch_start:batch_end]
|
728 |
+
|
729 |
+
# Process the batch
|
730 |
+
processed_batch = process_batch(df_batch)
|
731 |
+
processed_batches.append(processed_batch)
|
732 |
+
|
733 |
+
# Save checkpoint
|
734 |
+
save_checkpoint(start_idx + batch_end)
|
735 |
+
|
736 |
+
# Save intermediate results every 5 batches to prevent data loss in case of session timeout
|
737 |
+
if i % 5 == 0 and i > 0:
|
738 |
+
file_basename = os.path.splitext(os.path.basename(input_csv))[0]
|
739 |
+
interim_df = pd.concat(processed_batches, ignore_index=True)
|
740 |
+
interim_file = f"{OUTPUT_FOLDER}/{file_basename}_interim_{i}.csv"
|
741 |
+
interim_df.to_csv(interim_file, index=False)
|
742 |
+
print(f"\nSaved interim results to {interim_file}")
|
743 |
+
|
744 |
+
# Clear memory
|
745 |
+
clear_gpu_memory()
|
746 |
+
|
747 |
+
# Combine all batches
|
748 |
+
if processed_batches:
|
749 |
+
file_basename = os.path.splitext(os.path.basename(input_csv))[0]
|
750 |
+
|
751 |
+
final_df = pd.concat(processed_batches, ignore_index=True)
|
752 |
+
|
753 |
+
# Calculate statistics columns
|
754 |
+
final_df["mention_count"] = final_df["extracted_mentions"].str.count(";") + (final_df["extracted_mentions"] != "").astype(int)
|
755 |
+
final_df["hashtag_count"] = final_df["extracted_hashtags"].str.count(";") + (final_df["extracted_hashtags"] != "").astype(int)
|
756 |
+
final_df["entity_count"] = final_df["named_entities"].str.count(";") + (final_df["named_entities"] != "").astype(int)
|
757 |
+
|
758 |
+
# Save the full processed dataset
|
759 |
+
output_file = f"{OUTPUT_FOLDER}/{file_basename}_processed.csv"
|
760 |
+
final_df.to_csv(output_file, index=False)
|
761 |
+
print(f"Processed data saved to {output_file}")
|
762 |
+
|
763 |
+
# Create a lighter version with just the analysis
|
764 |
+
analysis_columns = [
|
765 |
+
"id", "original_text", "cleaned_text", "nlp_processed_text",
|
766 |
+
"extracted_mentions", "extracted_hashtags", "extracted_urls",
|
767 |
+
"named_entities", "key_phrases", "important_nouns",
|
768 |
+
"sentiment", "sentiment_score", "sentiment_magnitude",
|
769 |
+
"mention_count", "hashtag_count", "entity_count"
|
770 |
+
]
|
771 |
+
|
772 |
+
# Ensure all columns exist before subsetting
|
773 |
+
available_columns = [col for col in analysis_columns if col in final_df.columns]
|
774 |
+
analysis_df = final_df[available_columns]
|
775 |
+
analysis_file = f"{OUTPUT_FOLDER}/{file_basename}_analysis.csv"
|
776 |
+
analysis_df.to_csv(analysis_file, index=False)
|
777 |
+
print(f"Analysis results saved to {analysis_file}")
|
778 |
+
|
779 |
+
# Print statistics
|
780 |
+
print(f"\nAnalysis completed successfully!")
|
781 |
+
print(f"Total records: {len(final_df)}")
|
782 |
+
print(f"Tweets with Mentions: {(final_df['extracted_mentions'] != '').sum()}")
|
783 |
+
print(f"Tweets with Hashtags: {(final_df['extracted_hashtags'] != '').sum()}")
|
784 |
+
print(f"Tweets with Named Entities: {(final_df['named_entities'] != '').sum()}")
|
785 |
+
|
786 |
+
# Print sentiment statistics
|
787 |
+
sentiment_counts = final_df['sentiment'].value_counts()
|
788 |
+
print("\nSentiment Distribution:")
|
789 |
+
for sentiment, count in sentiment_counts.items():
|
790 |
+
percentage = (count / len(final_df)) * 100
|
791 |
+
print(f" {sentiment}: {count} tweets ({percentage:.1f}%)")
|
792 |
+
|
793 |
+
# Get average sentiment scores
|
794 |
+
avg_score = final_df['sentiment_score'].mean()
|
795 |
+
avg_magnitude = final_df['sentiment_magnitude'].mean()
|
796 |
+
print(f"\nAverage sentiment score: {avg_score:.3f}")
|
797 |
+
print(f"Average sentiment magnitude: {avg_magnitude:.3f}")
|
798 |
+
|
799 |
+
# Get top entities by sentiment
|
800 |
+
positive_entities = []
|
801 |
+
for idx, row in final_df[final_df['sentiment'] == 'positive'].iterrows():
|
802 |
+
entities = row['named_entities'].split(';') if isinstance(row['named_entities'], str) and row['named_entities'] else []
|
803 |
+
for entity in entities:
|
804 |
+
if entity and ':' in entity:
|
805 |
+
entity_name = entity.split(':')[0]
|
806 |
+
positive_entities.append(entity_name)
|
807 |
+
|
808 |
+
# Get the most common positive entities
|
809 |
+
from collections import Counter
|
810 |
+
top_positive = Counter(positive_entities).most_common(5)
|
811 |
+
if top_positive:
|
812 |
+
print("\nTop entities with positive sentiment:")
|
813 |
+
for entity, count in top_positive:
|
814 |
+
print(f" {entity}: {count} mentions")
|
815 |
+
|
816 |
+
# Print sample results
|
817 |
+
print("\nSample of processing results:")
|
818 |
+
for i, row in analysis_df.head(3).iterrows():
|
819 |
+
print(f"\nOriginal Text: {row['original_text']}")
|
820 |
+
print(f"Cleaned Text: {row['cleaned_text']}")
|
821 |
+
print(f"NLP Processed Text: {row['nlp_processed_text']}")
|
822 |
+
print(f"Mentions: {row['extracted_mentions']}")
|
823 |
+
print(f"Hashtags: {row['extracted_hashtags']}")
|
824 |
+
print(f"Named Entities: {row['named_entities']}")
|
825 |
+
print(f"Key Phrases: {row['key_phrases']}")
|
826 |
+
print(f"Sentiment: {row['sentiment']} (Score: {row['sentiment_score']:.3f}, Magnitude: {row['sentiment_magnitude']:.3f})")
|
827 |
+
print("-" * 80)
|
828 |
+
|
829 |
+
# Delete interim files
|
830 |
+
import glob
|
831 |
+
interim_files = glob.glob(f"{OUTPUT_FOLDER}/{file_basename}_interim_*.csv")
|
832 |
+
for f in interim_files:
|
833 |
+
try:
|
834 |
+
os.remove(f)
|
835 |
+
print(f"Deleted interim file: {os.path.basename(f)}")
|
836 |
+
except:
|
837 |
+
pass
|
838 |
+
|
839 |
+
# Clear memory after processing each file
|
840 |
+
clear_gpu_memory()
|
841 |
+
else:
|
842 |
+
print("No data processed for this file.")
|
843 |
+
|
844 |
+
# Clean up checkpoint file after successful processing
|
845 |
+
if os.path.exists(CHECKPOINT_FILE):
|
846 |
+
os.remove(CHECKPOINT_FILE)
|
847 |
+
print("\nAll files processed successfully!")
|
848 |
+
|
849 |
+
# ==============================================
|
850 |
+
# Colab Usage Example
|
851 |
+
# ==============================================
|
852 |
+
|
853 |
+
"""
|
854 |
+
# EXAMPLE USAGE IN COLAB:
|
855 |
+
|
856 |
+
# 1. Install packages and mount drive
|
857 |
+
from google.colab import drive
|
858 |
+
drive.mount('/content/drive')
|
859 |
+
|
860 |
+
# 2. Process one specific file
|
861 |
+
input_file = "/content/drive/MyDrive/projects_twitter_post/zilliqa.csv"
|
862 |
+
main(reset_checkpoint=True, input_file=input_file)
|
863 |
+
|
864 |
+
# 3. Process all files
|
865 |
+
main(reset_checkpoint=True)
|
866 |
+
"""
|
867 |
+
|
868 |
+
if __name__ == "__main__":
|
869 |
+
import sys
|
870 |
+
|
871 |
+
# Check if --reset flag is provided
|
872 |
+
reset_checkpoint = "--reset" in sys.argv
|
873 |
+
|
874 |
+
# Check if --file flag is provided
|
875 |
+
input_file = None
|
876 |
+
if "--file" in sys.argv:
|
877 |
+
try:
|
878 |
+
input_file = sys.argv[sys.argv.index("--file") + 1]
|
879 |
+
except IndexError:
|
880 |
+
print("Error: --file flag requires a filename argument")
|
881 |
+
sys.exit(1)
|
882 |
+
|
883 |
+
# Run the main function
|
884 |
+
main(reset_checkpoint=reset_checkpoint, input_file=input_file) )
|
885 |
+
|
886 |
+
demo.launch()
|