caliex commited on
Commit
353f6fa
·
1 Parent(s): 170c6a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -11,14 +11,14 @@ def compare_manifold_learning(methods, n_samples, n_neighbors, n_components, per
11
 
12
  for method in methods:
13
  manifold_method = {
14
- "LLE Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
15
- "LLE LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
16
- "LLE Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
17
- "LLE Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
18
  "Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1),
19
- "MDS": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False),
20
  "Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors),
21
- "t-SNE": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0)
22
  }[method]
23
  S_transformed = manifold_method.fit_transform(S_points)
24
  transformed_data.append(S_transformed)
@@ -41,14 +41,14 @@ def compare_manifold_learning(methods, n_samples, n_neighbors, n_components, per
41
  return "plot.png"
42
 
43
  method_options = [
44
- "LLE Standard",
45
- "LLE LTSA",
46
- "LLE Hessian",
47
- "LLE Modified",
48
  "Isomap",
49
- "MDS",
50
  "Spectral Embedding",
51
- "t-SNE"
52
  ]
53
 
54
  inputs = [
 
11
 
12
  for method in methods:
13
  manifold_method = {
14
+ "Locally Linear Embeddings Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
15
+ "Locally Linear Embeddings LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
16
+ "Locally Linear Embeddings Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
17
+ "Locally Linear Embeddings Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
18
  "Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1),
19
+ "MultiDimensional Scaling": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False),
20
  "Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors),
21
+ "T-distributed Stochastic Neighbor Embedding": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0)
22
  }[method]
23
  S_transformed = manifold_method.fit_transform(S_points)
24
  transformed_data.append(S_transformed)
 
41
  return "plot.png"
42
 
43
  method_options = [
44
+ "Locally Linear Embeddings Standard",
45
+ "Locally Linear Embeddings LTSA",
46
+ "Locally Linear Embeddings Hessian",
47
+ "Locally Linear Embeddings Modified",
48
  "Isomap",
49
+ "MultiDimensional Scaling",
50
  "Spectral Embedding",
51
+ "T-distributed Stochastic Neighbor Embedding"
52
  ]
53
 
54
  inputs = [