File size: 7,517 Bytes
4ecdaad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from utils import get_relevant_history, get_embedding
import torch
from LLM.base_LLM import *
from Memory import Memory
from Prompt import * 
import json
class Environment:
    """
    The place where the agent activities, responsible for storing some shared memories
    """
    def __init__(self, config) -> None:
        self.shared_memory = {"long_term_memory": [], "short_term_memory": None}
        self.agents = None

        self.summary_system_prompt = {}
        self.summary_last_prompt = {}
        self.environment_prompt = {}
        self.environment_type = config["environment_type"] if "environment_type" in config else "cooperative"
        self.current_chat_history_idx = 0
        self.LLMs = {}
        
        # 初始化每个state 的summary 方法
        # Initialize the summary method for each state
        for state_name, state_dict in config["states"].items():
            if state_name != "end_state":
                self.summary_system_prompt[state_name] = (
                    state_dict["summary_system_prompt"]
                    if "summary_system_prompt" in state_dict
                    else eval(Default_environment_summary_system_prompt)
                )

                self.summary_last_prompt[state_name] = (
                    state_dict["summary_last_prompt"]
                    if "summary_last_prompt" in state_dict
                    else eval(Default_environment_summary_last_prompt)
                )

                self.environment_prompt[state_name] = (
                    state_dict["environment_prompt"]
                    if "environment_prompt" in state_dict
                    else " "
                )
                self.LLMs[state_name] = init_LLM("logs"+os.sep+f"{state_name}",**state_dict)
        self.roles_to_names = None
        self.names_to_roles = None

    @classmethod
    def from_config(cls, config_path):
        with open(config_path) as f:
            config = json.load(f)
        return cls(config)

    def summary(self, current_state):
        """
        Summarize the situation in the current environment every once in a while
        """
        MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"])
        current_state_name = current_state.name

        query = self.shared_memory["long_term_memory"][-1].content
        if len(self.shared_memory["long_term_memory"])>1:
            relevant_history = get_relevant_history(
                query,
                self.shared_memory["long_term_memory"][:-1],
                self.shared_memory["chat_embeddings"][:-1],
            )

            relevant_history = Memory.get_chat_history(relevant_history)
        else:
            relevant_history = ""
        chat_history = Memory.get_chat_history(
            self.shared_memory["long_term_memory"][-MAX_CHAT_HISTORY + 1 :]
        )
        summary = self.shared_memory["short_term_memory"]
        
        
        # system prompt = environment prompt + current memory + system prompt
        # current_memory = summary + chat history + relevant history
        current_memory = eval(Environment_summary_memory)
        environment_prompt = self.environment_prompt[current_state_name]
        summary_system_prompt = self.summary_system_prompt[current_state_name]
        
        environment_summary_system_prompt = eval(Environment_summary_system_prompt)
        response = self.LLMs[current_state_name].get_response(None, environment_summary_system_prompt, stream=False)
        return response

    def update_memory(self, memory, current_state):
        """
        update chat embbedings and long term memory,short term memory,agents long term memory
        """
        MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"])
        self.shared_memory["long_term_memory"].append(memory)
        current_embedding = get_embedding(memory.content)
        if "chat_embeddings" not in self.shared_memory:
            self.shared_memory["chat_embeddings"] = current_embedding
        else:
            self.shared_memory["chat_embeddings"] = torch.cat(
                [self.shared_memory["chat_embeddings"], current_embedding], dim=0
            )
        if len(self.shared_memory["long_term_memory"]) % MAX_CHAT_HISTORY == 0:
            summary = self.summary(current_state)
            self.shared_memory["short_term_memory"] = summary

        self.agents[memory.send_name].update_memory(memory)
    
    
    def _get_agent_last_conversation_idx(self,agent,current_long_term_memory):
        last_conversation_idx = -1
        for i, history in enumerate(current_long_term_memory):
            if history.send_name == agent.name:
                last_conversation_idx = i
        return last_conversation_idx
    
    
    def _get_agent_new_memory(self,agent,current_long_term_memory):
        # get new conversation
        last_conversation_idx = self._get_agent_last_conversation_idx(agent,current_long_term_memory)

        if last_conversation_idx == -1:
            new_conversation =current_long_term_memory
        elif (
            last_conversation_idx
            == len(current_long_term_memory) - 1
        ):
            new_conversation = []
        else:
            new_conversation = current_long_term_memory[
                last_conversation_idx + 1 :
            ]
        MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"])
        if len(new_conversation) > 2 * MAX_CHAT_HISTORY:
            new_conversation = new_conversation[-2*MAX_CHAT_HISTORY+1:]

        # get chat history from new conversation
        return Memory.get_chat_history(new_conversation)
    
    
    def _observe(self,agent):
        MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"])
        current_state = agent.current_state
        current_role = agent.state_roles[current_state.name]
        current_component_dict = current_state.components[current_role]
        
        # cooperative:Sharing information between different states ;  competive: No information is shared between different states
        current_chat_history_idx = self.current_chat_history_idx if self.environment_type == "competive" else 0
        current_long_term_memory = self.shared_memory["long_term_memory"][current_chat_history_idx:]
        current_chat_embbedings = self.shared_memory["chat_embeddings"][current_chat_history_idx:]
            
        if len(current_long_term_memory)>2*MAX_CHAT_HISTORY:
            current_long_term_memory = current_long_term_memory[-2*MAX_CHAT_HISTORY+1:]
            current_chat_embbedings = current_chat_embbedings[-2*MAX_CHAT_HISTORY+1:]
        # relevant_memory
        query = current_long_term_memory[-1].content
        if len(current_long_term_memory)>1:
            relevant_memory = get_relevant_history(
                query,
                current_long_term_memory[:-2],
                current_chat_embbedings[:-2],
            )
            relevant_memory = Memory.get_chat_history(relevant_memory,agent.name)
        else:
            relevant_memory = ""
        
        relevant_memory = eval(Agent_observe_relevant_memory)
        agent.relevant_memory = relevant_memory
        
        
        # get chat history from new conversation
        conversations = self._get_agent_new_memory(agent,current_long_term_memory)

        # memory = relevant_memory + summary + history + query
        query = current_long_term_memory[-1]
        current_memory = eval(Agent_observe_memory)

        return {"role": "user", "content": current_memory}