callanwu's picture
add sop_generation
4ecdaad
raw
history blame
12.2 kB
# coding=utf-8
# Copyright 2023 The AIWaves Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""standard operation procedure of an LLM Autonomous agent"""
import random
from LLM.base_LLM import *
from State import State
from utils import extract, get_relevant_history
from Memory import Memory
from Prompt import *
import json
import os
class SOP:
"""
Responsible for managing the operational processes of all agents
"""
# SOP should have args : "states" "relations" "root"
def __init__(self, **kwargs):
self.controller_dict = {}
self.LLM = init_LLM("logs"+os.sep+"god",**kwargs)
self.states = {}
self.init_states(kwargs["states"])
self.init_relation(kwargs["relations"])
for state_name, states_dict in kwargs["states"].items():
if state_name != "end_state" and "controller" in states_dict:
self.controller_dict[state_name] = states_dict["controller"]
self.user_names = kwargs["user_names"] if "user_names" in kwargs else []
self.root = self.states[kwargs["root"]]
self.current_state = self.root
self.finish_state_name = (
kwargs["finish_state_name"]
if "finish_state_name" in kwargs
else "end_state"
)
self.roles_to_names = None
self.names_to_roles = None
self.finished = False
@classmethod
def from_config(cls, config_path):
with open(config_path) as f:
config = json.load(f)
os.environ.clear()
for key,value in config["config"].items():
if value!="":
os.environ[key] = value
sop = SOP(**config)
return sop
def init_states(self, states_dict):
for state_name, state_dict in states_dict.items():
state_dict["name"] = state_name
self.states[state_name] = State(**state_dict)
def init_relation(self, relations):
for state_name, state_relation in relations.items():
for idx, next_state_name in state_relation.items():
self.states[state_name].next_states[idx] = self.states[next_state_name]
def transit(self, chat_history, **kwargs):
"""
Determine the next state based on the current situation
Return :
next_state(State) : the next state
"""
# 如果是单一循环节点,则一直循环即可
# If it is a single loop node, just keep looping
if len(self.current_state.next_states) == 1:
next_state = "0"
# 否则则需要controller去判断进入哪一节点
# Otherwise, the controller needs to determine which node to enter.
else:
current_state = self.current_state
controller_dict = self.controller_dict[current_state.name]
relevant_history = kwargs["relevant_history"]
max_chat_nums = controller_dict["max_chat_nums"] if "max_chat_nums" in controller_dict else 1000
if current_state.chat_nums>=max_chat_nums:
return self.current_state.next_states["1"]
# 否则则让controller判断是否结束
# Otherwise, let the controller judge whether to end
judge_system_prompt = controller_dict["judge_system_prompt"] if "judge_system_prompt" in controller_dict else ""
environment_prompt = eval(Get_environment_prompt) if current_state.environment_prompt else ""
transit_system_prompt = eval(Transit_system_prompt)
judge_last_prompt = controller_dict["judge_last_prompt"] if "judge_last_prompt" in controller_dict else ""
transit_last_prompt = eval(Transit_last_prompt)
environment = kwargs["environment"]
environment_summary = environment.shared_memory["short_term_memory"]
chat_history_message = Memory.get_chat_history(chat_history)
query = chat_history[-1].get_query()
chat_messages = [
{
"role": "user",
"content": eval(Transit_message)
}
]
extract_words = controller_dict["judge_extract_words"] if "judge_extract_words" in controller_dict else "end"
response = self.LLM.get_response(
chat_messages, transit_system_prompt, transit_last_prompt, stream=False, **kwargs
)
next_state = (
response if response.isdigit() else extract(response, extract_words)
)
# 如果没有parse出来则继续循环
# If no parse comes out, continue looping
if not next_state.isdigit():
next_state = "0"
next_state = self.current_state.next_states[next_state]
return next_state
def route(self, chat_history, **kwargs):
"""
Determine the role that needs action based on the current situation
Return :
current_agent(Agent) : the next act agent
"""
agents = kwargs["agents"]
# 知道进入哪一状态后开始分配角色,如果该状态下只有一个角色则直接分配给他
# Start assigning roles after knowing which state you have entered. If there is only one role in that state, assign it directly to him.
if len(self.current_state.roles) == 1:
next_role = self.current_state.roles[0]
# 否则controller进行分配
# Otherwise the controller determines
else:
relevant_history = kwargs["relevant_history"]
controller_type = (
self.controller_dict[self.current_state.name]["controller_type"]
if "controller_type" in self.controller_dict[self.current_state.name]
else "order"
)
# 如果是rule 控制器,则交由LLM进行分配角色
# If controller type is rule, it is left to LLM to assign roles.
if controller_type == "rule":
controller_dict = self.controller_dict[self.current_state.name]
call_last_prompt = controller_dict["call_last_prompt"] if "call_last_prompt" in controller_dict else ""
allocate_prompt = ""
roles = list(set(self.current_state.roles))
for role in roles:
allocate_prompt += eval(Allocate_component)
call_system_prompt = controller_dict["call_system_prompt"] if "call_system_prompt" in controller_dict else ""
environment_prompt = eval(Get_environment_prompt) if self.current_state.environment_prompt else ""
# call_system_prompt + environment + allocate_prompt
call_system_prompt = eval(Call_system_prompt)
query = chat_history[-1].get_query()
last_name = chat_history[-1].send_name
# last_prompt: note + last_prompt + query
call_last_prompt =eval(Call_last_prompt)
chat_history_message = Memory.get_chat_history(chat_history)
# Intermediate historical conversation records
chat_messages = [
{
"role": "user",
"content": eval(Call_message),
}
]
extract_words = controller_dict["call_extract_words"] if "call_extract_words" in controller_dict else "end"
response = self.LLM.get_response(
chat_messages, call_system_prompt, call_last_prompt, stream=False, **kwargs
)
# get next role
next_role = extract(response, extract_words)
# Speak in order
elif controller_type == "order":
# If there is no begin role, it will be given directly to the first person.
if not self.current_state.current_role:
next_role = self.current_state.roles[0]
# otherwise first
else:
self.current_state.index += 1
self.current_state.index = (self.current_state.index) % len(self.current_state.roles)
next_role = self.current_state.roles[self.current_state.index]
# random speak
elif controller_type == "random":
next_role = random.choice(self.current_state.roles)
# 如果下一角色不在,则随机挑选一个
# If the next character is not available, pick one at random
if next_role not in self.current_state.roles:
next_role = random.choice(self.current_state.roles)
self.current_state.current_role = next_role
next_agent = agents[self.roles_to_names[self.current_state.name][next_role]]
return next_agent
def next(self, environment, agents):
"""
Determine the next state and the agent that needs action based on the current situation
"""
# 如果是第一次进入该状态
# If it is the first time to enter this state
if self.current_state.is_begin:
agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
agent = agents[agent_name]
return self.current_state,agent
# get relevant history
query = environment.shared_memory["long_term_memory"][-1].content
relevant_history = get_relevant_history(
query,
environment.shared_memory["long_term_memory"][:-1],
environment.shared_memory["chat_embeddings"][:-1],
)
relevant_history = Memory.get_chat_history(relevant_history)
next_state = self.transit(
chat_history=environment.shared_memory["long_term_memory"][
environment.current_chat_history_idx :
],
relevant_history=relevant_history,
environment=environment,
)
# 如果进入终止节点,则直接终止
# If you enter the termination node, terminate directly
if next_state.name == self.finish_state_name:
self.finished = True
return None, None
self.current_state = next_state
# 如果是首次进入该节点且有开场白,则直接分配给开场角色
# If it is the first time to enter the state and there is a begin query, it will be directly assigned to the begin role.
if self.current_state.is_begin and self.current_state.begin_role:
agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
agent = agents[agent_name]
return self.current_state,agent
next_agent = self.route(
chat_history=environment.shared_memory["long_term_memory"][
environment.current_chat_history_idx :
],
agents = agents,
relevant_history=relevant_history,
)
return self.current_state, next_agent