File size: 9,122 Bytes
954caab
b3ee019
954caab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609badf
954caab
 
 
 
 
 
 
 
 
 
 
575862a
b3ee019
954caab
609badf
954caab
 
 
 
 
 
 
 
 
 
 
 
b3ee019
954caab
 
 
 
 
 
 
b3ee019
954caab
 
 
b3ee019
954caab
 
 
 
 
 
 
b3ee019
954caab
 
 
 
 
 
 
b3ee019
954caab
 
 
 
 
b3ee019
954caab
 
 
 
 
 
 
 
 
 
 
 
 
b3ee019
954caab
b3ee019
609badf
954caab
 
b3ee019
954caab
b3ee019
954caab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609badf
954caab
 
 
 
 
 
 
 
 
 
 
b3ee019
954caab
 
 
b3ee019
954caab
 
 
b3ee019
954caab
 
b3ee019
954caab
 
 
 
b3ee019
954caab
 
 
 
 
b3ee019
954caab
 
 
b3ee019
 
954caab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609badf
954caab
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from tqdm import tqdm
from icecream import ic

import torch
import torch.nn.functional as F

from diffusers.utils.torch_utils import randn_tensor

@torch.no_grad()
def sample_stage_1(model,
                   prompt_embeds,
                   negative_prompt_embeds, 
                   views,
                   num_inference_steps=100,
                   guidance_scale=7.0,
                   reduction='mean',
                   generator=None):

    # Params
    num_images_per_prompt = 1
    device = model.device
    height = model.unet.config.sample_size
    width = model.unet.config.sample_size
    batch_size = 1      # TODO: Support larger batch sizes, maybe
    num_prompts = prompt_embeds.shape[0]
    assert num_prompts == len(views), \
        "Number of prompts must match number of views!"

    # For CFG
    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

    # Setup timesteps
    model.scheduler.set_timesteps(int(num_inference_steps), device=device)
    timesteps = model.scheduler.timesteps

    # Make intermediate_images
    noisy_images = model.prepare_intermediate_images(
        batch_size * num_images_per_prompt,
        model.unet.config.in_channels,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
    ).to('cuda')
    # ic(noisy_images.shape)

    for i, t in enumerate(tqdm(timesteps)):
        # Apply views to noisy_image
        viewed_noisy_images = []
        for view_fn in views:
            viewed_noisy_images.append(view_fn.view(noisy_images[0]))
        viewed_noisy_images = torch.stack(viewed_noisy_images)

        # Duplicate inputs for CFG
        # Model input is: [ neg_0, neg_1, ..., pos_0, pos_1, ... ]
        model_input = torch.cat([viewed_noisy_images] * 2)
        model_input = model.scheduler.scale_model_input(model_input, t)

        # Predict noise estimate
        # print("Predicting noise estimate")
        noise_pred = model.unet(
            model_input,
            t,
            encoder_hidden_states=prompt_embeds,
            cross_attention_kwargs=None,
            return_dict=False,
        )[0]
        # ic(noise_pred.shape)

        # Extract uncond (neg) and cond noise estimates
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        # ic(noise_pred_uncond.shape)

        # Invert the unconditional (negative) estimates
        inverted_preds = []
        for pred, view in zip(noise_pred_uncond, views):
            inverted_pred = view.inverse_view(pred)
            inverted_preds.append(inverted_pred)
        noise_pred_uncond = torch.stack(inverted_preds)
        # ic(noise_pred_uncond.shape)

                                # Invert the conditional estimates
        inverted_preds = []
        for pred, view in zip(noise_pred_text, views):
            inverted_pred = view.inverse_view(pred)
            inverted_preds.append(inverted_pred)
        noise_pred_text = torch.stack(inverted_preds)
        # ic(noise_pred_text.shape)

        # Split into noise estimate and variance estimates
        noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
        noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        # ic(noise_pred.shape)

        # Reduce predicted noise and variances
        noise_pred = noise_pred.view(-1,num_prompts,3,64,64)
        predicted_variance = predicted_variance.view(-1,num_prompts,3,64,64)
        if reduction == 'mean':
            noise_pred = noise_pred.mean(1)
            predicted_variance = predicted_variance.mean(1)
        elif reduction == 'alternate':
            noise_pred = noise_pred[:,i%num_prompts]
            predicted_variance = predicted_variance[:,i%num_prompts]
        else:
            raise ValueError('Reduction must be either `mean` or `alternate`')
        noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
        # ic(noise_pred.shape)

        # ic(t.shape)
        # ic(t.dtype)
        # compute the previous noisy sample x_t -> x_t-1
        noisy_images = model.scheduler.step(
            noise_pred.to('cuda'), t, noisy_images.to('cuda'), generator=generator, return_dict=False
        )[0]
        # ic(noisy_images.shape)

    # Return denoised images
    return noisy_images







@torch.no_grad()
def sample_stage_2(model,
                   image,
                   prompt_embeds,
                   negative_prompt_embeds, 
                   views,
                   num_inference_steps=100,
                   guidance_scale=7.0,
                   reduction='mean',
                   noise_level=50,
                   generator=None):

    # Params
    batch_size = 1      # TODO: Support larger batch sizes, maybe
    num_prompts = prompt_embeds.shape[0]
    height = model.unet.config.sample_size
    width = model.unet.config.sample_size
    device = model.device
    num_images_per_prompt = 1

    # For CFG
    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

    # Get timesteps
    model.scheduler.set_timesteps(int(num_inference_steps), device=device)
    timesteps = model.scheduler.timesteps

    num_channels = model.unet.config.in_channels // 2
    noisy_images = model.prepare_intermediate_images(
        batch_size * num_images_per_prompt,
        num_channels,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
    ).to('cuda')

    # Prepare upscaled image and noise level
    image = model.preprocess_image(image, num_images_per_prompt, device)
    upscaled = F.interpolate(image.to('cuda'), (height, width), mode="bilinear", align_corners=True).to('cuda')

    noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device)
    noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype)
    upscaled = model.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level).to('cuda')

    # Condition on noise level, for each model input
    noise_level = torch.cat([noise_level] * num_prompts * 2).to('cuda')

    # Denoising Loop
    for i, t in enumerate(tqdm(timesteps)):
        # Cat noisy image with upscaled conditioning image
        model_input = torch.cat([noisy_images, upscaled], dim=1).to('cuda')

        # Apply views to noisy_image
        viewed_inputs = []
        for view_fn in views:
            viewed_inputs.append(view_fn.view(model_input[0]))
        viewed_inputs = torch.stack(viewed_inputs).to('cuda')

        # Duplicate inputs for CFG
        # Model input is: [ neg_0, neg_1, ..., pos_0, pos_1, ... ]
        model_input = torch.cat([viewed_inputs] * 2).to('cuda')
        model_input = model.scheduler.scale_model_input(model_input, t).to('cuda')

        # predict the noise residual
        noise_pred = model.unet(
            model_input,
            t,
            encoder_hidden_states=prompt_embeds,
            class_labels=noise_level,
            cross_attention_kwargs=None,
            return_dict=False,
        )[0]

        # Extract uncond (neg) and cond noise estimates
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

        # Invert the unconditional (negative) estimates
        # TODO: pretty sure you can combine these into one loop
        inverted_preds = []
        for pred, view in zip(noise_pred_uncond, views):
            inverted_pred = view.inverse_view(pred)
            inverted_preds.append(inverted_pred)
        noise_pred_uncond = torch.stack(inverted_preds)

        # Invert the conditional estimates
        inverted_preds = []
        for pred, view in zip(noise_pred_text, views):
            inverted_pred = view.inverse_view(pred)
            inverted_preds.append(inverted_pred)
        noise_pred_text = torch.stack(inverted_preds)

        # Split predicted noise and predicted variances
        noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1)
        noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1] // 2, dim=1)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        # Combine noise estimates (and variance estimates)
        noise_pred = noise_pred.view(-1,num_prompts,3,256,256)
        predicted_variance = predicted_variance.view(-1,num_prompts,3,256,256)
        if reduction == 'mean':
            noise_pred = noise_pred.mean(1)
            predicted_variance = predicted_variance.mean(1)
        elif reduction == 'alternate':
            noise_pred = noise_pred[:,i%num_prompts]
            predicted_variance = predicted_variance[:,i%num_prompts]

        noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

        # compute the previous noisy sample x_t -> x_t-1
        noisy_images = model.scheduler.step(
            noise_pred.to('cuda'), t, noisy_images.to('cuda'), generator=generator, return_dict=False
        )[0]

    # Return denoised images
    return noisy_images