revert: remove option to use `togethercomputer/GPT-NeoXT-Chat-Base-20B`
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import os
|
2 |
-
from typing import Literal
|
3 |
-
import logging
|
4 |
import streamlit as st
|
5 |
|
6 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
@@ -9,7 +7,6 @@ from langchain.chains import VectorDBQA
|
|
9 |
from huggingface_hub import snapshot_download
|
10 |
from langchain import OpenAI
|
11 |
from langchain import PromptTemplate
|
12 |
-
from langchain.llms import HuggingFacePipeline, HuggingFaceHub
|
13 |
|
14 |
|
15 |
BOOK_NAME = "1984"
|
@@ -76,26 +73,10 @@ def load_prompt(book_name, author_name):
|
|
76 |
return PROMPT
|
77 |
|
78 |
|
79 |
-
@st.experimental_singleton(show_spinner=False
|
80 |
-
def load_chain(
|
81 |
-
|
82 |
-
|
83 |
-
if model=="openai":
|
84 |
-
llm = OpenAI(temperature=0.2)
|
85 |
-
|
86 |
-
if model=="togethercomputer/GPT-NeoXT-Chat-Base-20B":
|
87 |
-
# llm = HuggingFacePipeline.from_model_id(
|
88 |
-
# model_id="togethercomputer/GPT-NeoXT-Chat-Base-20B",
|
89 |
-
# task="text-generation",
|
90 |
-
# model_kwargs={"temperature":0.2, "max_length":400}
|
91 |
-
# )
|
92 |
-
llm = HuggingFaceHub(
|
93 |
-
repo_id="togethercomputer/GPT-NeoXT-Chat-Base-20B",
|
94 |
-
task="text-generation",
|
95 |
-
model_kwargs={"temperature":0.2, "max_length":400}
|
96 |
-
)
|
97 |
-
|
98 |
-
# load chain
|
99 |
chain = VectorDBQA.from_chain_type(
|
100 |
chain_type_kwargs = {"prompt": load_prompt(book_name=BOOK_NAME, author_name=AUTHOR_NAME)},
|
101 |
llm=llm,
|
@@ -104,14 +85,12 @@ def load_chain(model: Literal["openai", "togethercomputer/GPT-NeoXT-Chat-Base-20
|
|
104 |
k=8,
|
105 |
return_source_documents=True,
|
106 |
)
|
107 |
-
|
108 |
-
logging.info(f"Loaded chain with {model}.")
|
109 |
|
110 |
return chain
|
111 |
|
112 |
|
113 |
-
def get_answer(question
|
114 |
-
chain = load_chain(
|
115 |
result = chain({"query": question})
|
116 |
|
117 |
answer = result["result"]
|
@@ -145,26 +124,11 @@ def get_answer(question, model="openai"):
|
|
145 |
|
146 |
##### sidebar ####
|
147 |
with st.sidebar:
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
if choice == "OpenAI":
|
155 |
-
api_key = st.text_input(label = "Paste your OpenAI API key here to get started",
|
156 |
-
type = "password",
|
157 |
-
help = "This isn't saved π"
|
158 |
-
)
|
159 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
160 |
-
|
161 |
-
|
162 |
-
if choice == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
|
163 |
-
api_key = st.text_input(label = "Paste your Hugging Face Hub API key here to get started",
|
164 |
-
type = "password",
|
165 |
-
help = "This isn't saved π"
|
166 |
-
)
|
167 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
168 |
|
169 |
st.markdown("---")
|
170 |
|
@@ -187,21 +151,16 @@ ask = col2.button("Ask")
|
|
187 |
|
188 |
if ask:
|
189 |
|
190 |
-
if
|
191 |
st.write(f"**{BOOK_NAME}:** Whoops looks like you forgot your API key buddy")
|
192 |
st.stop()
|
193 |
else:
|
194 |
with st.spinner("Um... excuse me but... this can take about a minute for your first question because some stuff have to be downloaded π₯Ίππ»ππ»"):
|
195 |
try:
|
196 |
-
answer, pages, extract = get_answer(question=user_input
|
197 |
-
logging.info(f"Answer successfully generated using {choice}.")
|
198 |
except:
|
199 |
-
|
200 |
-
|
201 |
-
st.stop()
|
202 |
-
else:
|
203 |
-
st.write(f"**{BOOK_NAME}:** What\'s going on? That's not the right API key")
|
204 |
-
st.stop()
|
205 |
|
206 |
st.write(f"**{BOOK_NAME}:** {answer}")
|
207 |
|
|
|
1 |
import os
|
|
|
|
|
2 |
import streamlit as st
|
3 |
|
4 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
7 |
from huggingface_hub import snapshot_download
|
8 |
from langchain import OpenAI
|
9 |
from langchain import PromptTemplate
|
|
|
10 |
|
11 |
|
12 |
BOOK_NAME = "1984"
|
|
|
73 |
return PROMPT
|
74 |
|
75 |
|
76 |
+
@st.experimental_singleton(show_spinner=False)
|
77 |
+
def load_chain():
|
78 |
+
llm = OpenAI(temperature=0.2)
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
chain = VectorDBQA.from_chain_type(
|
81 |
chain_type_kwargs = {"prompt": load_prompt(book_name=BOOK_NAME, author_name=AUTHOR_NAME)},
|
82 |
llm=llm,
|
|
|
85 |
k=8,
|
86 |
return_source_documents=True,
|
87 |
)
|
|
|
|
|
88 |
|
89 |
return chain
|
90 |
|
91 |
|
92 |
+
def get_answer(question):
|
93 |
+
chain = load_chain()
|
94 |
result = chain({"query": question})
|
95 |
|
96 |
answer = result["result"]
|
|
|
124 |
|
125 |
##### sidebar ####
|
126 |
with st.sidebar:
|
127 |
+
api_key = st.text_input(label = "Paste your OpenAI API key here to get started",
|
128 |
+
type = "password",
|
129 |
+
help = "This isn't saved π"
|
130 |
+
)
|
131 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
st.markdown("---")
|
134 |
|
|
|
151 |
|
152 |
if ask:
|
153 |
|
154 |
+
if api_key is "":
|
155 |
st.write(f"**{BOOK_NAME}:** Whoops looks like you forgot your API key buddy")
|
156 |
st.stop()
|
157 |
else:
|
158 |
with st.spinner("Um... excuse me but... this can take about a minute for your first question because some stuff have to be downloaded π₯Ίππ»ππ»"):
|
159 |
try:
|
160 |
+
answer, pages, extract = get_answer(question=user_input)
|
|
|
161 |
except:
|
162 |
+
st.write(f"**{BOOK_NAME}:** What\'s going on? That's not the right API key")
|
163 |
+
st.stop()
|
|
|
|
|
|
|
|
|
164 |
|
165 |
st.write(f"**{BOOK_NAME}:** {answer}")
|
166 |
|