File size: 8,259 Bytes
692e2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import shutil
from tqdm import tqdm
import cv2
import pandas as pd
import torch
from PIL import Image
from transformers import Owlv2Processor, Owlv2ForObjectDetection
import math
import zipfile
from utils import plot_predictions, mp4_to_png, vid_stitcher
def owl_batch_video(
input_vids: list[str],
target_prompt: list[str],
species_prompt: str,
threshold: float,
fps_processed: int = 1,
scaling_factor: float = 0.5,
batch_size: int = 8,
save_dir: str = "temp/"
):
pos_preds = []
neg_preds = []
df = pd.DataFrame(columns=["video path", "detection?"])
for vid in input_vids:
detection = owl_video_detection(vid,
target_prompt,
species_prompt,
threshold,
fps_processed=fps_processed,
scaling_factor=scaling_factor,
batch_size=batch_size,
save_dir=save_dir)
if detection == True:
pos_preds.append(vid)
row = pd.DataFrame({"video path": [vid], "detection?": ["True"]})
df = pd.concat([df, row], ignore_index=True)
else:
neg_preds.append(vid)
row = pd.DataFrame({"video path": [vid], "detection?": ["False"]})
df = pd.concat([df, row], ignore_index=True)
# save the df
df.to_csv(save_dir + "detection_results.csv")
# zip the save_dir
zip_file = f"{save_dir}/results.zip"
zip_directory(save_dir, zip_file)
return zip_file
def zip_directory(folder_path, output_zip_path):
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(root, file)
# Write the file with a relative path to preserve folder structure
arcname = os.path.relpath(file_path, start=folder_path)
zipf.write(file_path, arcname)
def preprocess_text(text_prompt: str, num_prompts: int = 1):
"""
Takes a string of text prompts and returns a list of lists of text prompts for each image.
i.e. text_prompt = "a, b, c" -> [["a", "b", "c"], ["a", "b", "c"]]
"""
text_prompt = [s.strip() for s in text_prompt.split(",")]
text_queries = [text_prompt] * num_prompts
# print("text_queries:", text_queries)
return text_queries
def owl_batch_prediction(
images: torch.Tensor,
text_queries : list[str], # assuming that every image is queried with the same text prompt
threshold: float,
processor,
model,
device: str = 'cuda'
):
inputs = processor(text=text_queries, images=images, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.Tensor([img.size[::-1] for img in images]).to(device)
# Convert outputs (bounding boxes and class logits) to COCO API, resizes to original image size and filter by threshold
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=threshold)
return results
def count_pos(phrases: list[str], text_targets: list[str]) -> int:
"""
Counts how many phrases in the list match any of the target phrases.
Args:
phrases: A list of strings to evaluate.
text_targets: A list of target strings to match against.
Returns:
The number of phrases that match any of the targets.
"""
if len(phrases) == 0 or len(text_targets) == 0:
return 0
target_set = set(text_targets)
return sum(1 for phrase in phrases if phrase in target_set)
def owl_video_detection(
vid_path: str,
text_target: list[str],
text_prompt: str,
threshold: float,
fps_processed: int = 1,
scaling_factor: float = 0.5,
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble"),
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to('cuda'),
device: str = 'cuda',
batch_size: int = 8,
save_dir: str = "temp/",
):
"""
Runs owl on a video and saves the results to a dataframe.
Returns True if text_target is detected in the video, False otherwise.
Stops running owl when a text_target is detected.
"""
os.makedirs(save_dir, exist_ok=True)
os.makedirs(f"{save_dir}/positives", exist_ok=True)
os.makedirs(f"{save_dir}/negatives", exist_ok=True)
# set up df for results
df = pd.DataFrame(columns=["frame", "boxes", "scores", "labels", "count"])
# create new dirs and paths for results
filename = os.path.splitext(os.path.basename(vid_path))[0]
frames_dir = f"{save_dir}/{filename}_frames"
os.makedirs(frames_dir, exist_ok=True)
# process video and create a directory of video frames
fps = mp4_to_png(vid_path, frames_dir, scaling_factor)
# get all frame paths
frame_filenames = os.listdir(frames_dir)
frame_paths = [] # list of frame paths to process based on fps_processed
# for every frame processed, add to frame_paths
for i, frame in enumerate(frame_filenames):
if i % fps_processed == 0:
frame_paths.append(os.path.join(frames_dir, frame))
# run owl in batches
for i in tqdm(range(0, len(frame_paths), batch_size), desc="Running batches"):
frame_nums = [i*fps_processed for i in range(batch_size)]
batch_paths = frame_paths[i:i+batch_size] # paths for this batch
images = [Image.open(image_path) for image_path in batch_paths]
# run owl on this batch of frames
text_queries = preprocess_text(text_prompt, len(batch_paths))
results = owl_batch_prediction(images, text_queries, threshold, processor, model, device)
# get the boxes, logits, and phrases for this batch
label_ids = []
for entry in results:
if entry['labels'].numel() > 0:
label_ids.append(entry['labels'].tolist())
else:
label_ids.append(None)
text = text_queries[0] # assuming that all texts in query are the same for each image
labels = []
# convert label_ids to phrases, if no phrases, append None
for idx in label_ids:
if idx is not None:
idx = [text[id] for id in idx]
labels.append(idx)
else:
labels.append([])
batch_pos = 0
for j, image in enumerate(batch_paths):
boxes = results[j]['boxes'].cpu().numpy()
scores = results[j]['scores'].cpu().numpy()
print(labels[j], text_target, count_pos(labels[j], text_target))
count = count_pos(labels[j], text_target)
row = pd.DataFrame({"frame": [image], "boxes": [boxes], "scores": [scores], "labels": [labels[j]], "count": count})
df = pd.concat([df, row], ignore_index=True)
# if there are detections, save the frame replacing the original frame
if count > 0:
annotated_frame = plot_predictions(image, labels[j], scores, boxes)
cv2.imwrite(image, annotated_frame)
batch_pos += 1
# if more than 2/3 batch frames are positive, return True
if batch_pos > math.ceil(2/3*batch_size):
vid_stitcher(frames_dir, f"{save_dir}/positives/{filename}_{threshold}.mp4", fps)
shutil.rmtree(frames_dir) # delete the frames to save space
df.to_csv(f"{save_dir}/positives/{filename}_{threshold}.csv", index=False)
return True
shutil.rmtree(frames_dir) # delete the frames to save space
df.to_csv(f"{save_dir}/negatives/{filename}_{threshold}.csv", index=False)
return False
|