import os import shutil from tqdm import tqdm import cv2 import pandas as pd import torch from PIL import Image from transformers import Owlv2Processor, Owlv2ForObjectDetection import math import zipfile from utils import plot_predictions, mp4_to_png, vid_stitcher def owl_batch_video( input_vids: list[str], target_prompt: list[str], species_prompt: str, threshold: float, fps_processed: int = 1, scaling_factor: float = 0.5, batch_size: int = 8, save_dir: str = "temp/" ): pos_preds = [] neg_preds = [] df = pd.DataFrame(columns=["video path", "detection?"]) for vid in input_vids: detection = owl_video_detection(vid, target_prompt, species_prompt, threshold, fps_processed=fps_processed, scaling_factor=scaling_factor, batch_size=batch_size, save_dir=save_dir) if detection == True: pos_preds.append(vid) row = pd.DataFrame({"video path": [vid], "detection?": ["True"]}) df = pd.concat([df, row], ignore_index=True) else: neg_preds.append(vid) row = pd.DataFrame({"video path": [vid], "detection?": ["False"]}) df = pd.concat([df, row], ignore_index=True) # save the df df.to_csv(save_dir + "detection_results.csv") # zip the save_dir zip_file = f"{save_dir}/results.zip" zip_directory(save_dir, zip_file) return zip_file def zip_directory(folder_path, output_zip_path): with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(folder_path): for file in files: file_path = os.path.join(root, file) # Write the file with a relative path to preserve folder structure arcname = os.path.relpath(file_path, start=folder_path) zipf.write(file_path, arcname) def preprocess_text(text_prompt: str, num_prompts: int = 1): """ Takes a string of text prompts and returns a list of lists of text prompts for each image. i.e. text_prompt = "a, b, c" -> [["a", "b", "c"], ["a", "b", "c"]] """ text_prompt = [s.strip() for s in text_prompt.split(",")] text_queries = [text_prompt] * num_prompts # print("text_queries:", text_queries) return text_queries def owl_batch_prediction( images: torch.Tensor, text_queries : list[str], # assuming that every image is queried with the same text prompt threshold: float, processor, model, device: str = 'cuda' ): inputs = processor(text=text_queries, images=images, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) # Target image sizes (height, width) to rescale box predictions [batch_size, 2] target_sizes = torch.Tensor([img.size[::-1] for img in images]).to(device) # Convert outputs (bounding boxes and class logits) to COCO API, resizes to original image size and filter by threshold results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=threshold) return results def count_pos(phrases: list[str], text_targets: list[str]) -> int: """ Counts how many phrases in the list match any of the target phrases. Args: phrases: A list of strings to evaluate. text_targets: A list of target strings to match against. Returns: The number of phrases that match any of the targets. """ if len(phrases) == 0 or len(text_targets) == 0: return 0 target_set = set(text_targets) return sum(1 for phrase in phrases if phrase in target_set) def owl_video_detection( vid_path: str, text_target: list[str], text_prompt: str, threshold: float, fps_processed: int = 1, scaling_factor: float = 0.5, processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble"), model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to('cuda'), device: str = 'cuda', batch_size: int = 8, save_dir: str = "temp/", ): """ Runs owl on a video and saves the results to a dataframe. Returns True if text_target is detected in the video, False otherwise. Stops running owl when a text_target is detected. """ os.makedirs(save_dir, exist_ok=True) os.makedirs(f"{save_dir}/positives", exist_ok=True) os.makedirs(f"{save_dir}/negatives", exist_ok=True) # set up df for results df = pd.DataFrame(columns=["frame", "boxes", "scores", "labels", "count"]) # create new dirs and paths for results filename = os.path.splitext(os.path.basename(vid_path))[0] frames_dir = f"{save_dir}/{filename}_frames" os.makedirs(frames_dir, exist_ok=True) # process video and create a directory of video frames fps = mp4_to_png(vid_path, frames_dir, scaling_factor) # get all frame paths frame_filenames = os.listdir(frames_dir) frame_paths = [] # list of frame paths to process based on fps_processed # for every frame processed, add to frame_paths for i, frame in enumerate(frame_filenames): if i % fps_processed == 0: frame_paths.append(os.path.join(frames_dir, frame)) # run owl in batches for i in tqdm(range(0, len(frame_paths), batch_size), desc="Running batches"): frame_nums = [i*fps_processed for i in range(batch_size)] batch_paths = frame_paths[i:i+batch_size] # paths for this batch images = [Image.open(image_path) for image_path in batch_paths] # run owl on this batch of frames text_queries = preprocess_text(text_prompt, len(batch_paths)) results = owl_batch_prediction(images, text_queries, threshold, processor, model, device) # get the boxes, logits, and phrases for this batch label_ids = [] for entry in results: if entry['labels'].numel() > 0: label_ids.append(entry['labels'].tolist()) else: label_ids.append(None) text = text_queries[0] # assuming that all texts in query are the same for each image labels = [] # convert label_ids to phrases, if no phrases, append None for idx in label_ids: if idx is not None: idx = [text[id] for id in idx] labels.append(idx) else: labels.append([]) batch_pos = 0 for j, image in enumerate(batch_paths): boxes = results[j]['boxes'].cpu().numpy() scores = results[j]['scores'].cpu().numpy() print(labels[j], text_target, count_pos(labels[j], text_target)) count = count_pos(labels[j], text_target) row = pd.DataFrame({"frame": [image], "boxes": [boxes], "scores": [scores], "labels": [labels[j]], "count": count}) df = pd.concat([df, row], ignore_index=True) # if there are detections, save the frame replacing the original frame if count > 0: annotated_frame = plot_predictions(image, labels[j], scores, boxes) cv2.imwrite(image, annotated_frame) batch_pos += 1 # if more than 2/3 batch frames are positive, return True if batch_pos > math.ceil(2/3*batch_size): vid_stitcher(frames_dir, f"{save_dir}/positives/{filename}_{threshold}.mp4", fps) shutil.rmtree(frames_dir) # delete the frames to save space df.to_csv(f"{save_dir}/positives/{filename}_{threshold}.csv", index=False) return True shutil.rmtree(frames_dir) # delete the frames to save space df.to_csv(f"{save_dir}/negatives/{filename}_{threshold}.csv", index=False) return False