haramkoo commited on
Commit
7f2f5e9
·
1 Parent(s): 3d553a9

model examples update

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -14,23 +14,23 @@ examples = [
14
  ]
15
 
16
  # Descriptions for each models
17
- descriptions = "Interview question remake is a model that..."
18
 
19
  # pass in Strings of model choice and input text for context
20
  def genQuestion(model_choice, context):
21
- global descriptions
22
  if model_choice=="interview-question-remake":
23
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
24
  tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
25
- descriptions = "Interview question remake is a model that..."
26
  elif model_choice=="interview-length-tagged":
27
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
28
  tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
29
- descriptions = "Interview question tagged is a model that..."
30
  elif model_choice=="reverse-interview-question":
31
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
32
  tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
33
- descriptions = "Reverse interview question is a model that..."
34
 
35
  inputs = tok(context, return_tensors="pt")
36
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
@@ -39,7 +39,7 @@ def genQuestion(model_choice, context):
39
  for i in range(4):
40
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
41
 
42
- return final_output , descriptions
43
 
44
  iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], examples=examples, description=descriptions, outputs="text")
45
  iface.launch()
 
14
  ]
15
 
16
  # Descriptions for each models
17
+ # descriptions = "Interview question remake is a model that..."
18
 
19
  # pass in Strings of model choice and input text for context
20
  def genQuestion(model_choice, context):
21
+ # global descriptions
22
  if model_choice=="interview-question-remake":
23
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
24
  tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
25
+ # descriptions = "Interview question remake is a model that..."
26
  elif model_choice=="interview-length-tagged":
27
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
28
  tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
29
+ # descriptions = "Interview question tagged is a model that..."
30
  elif model_choice=="reverse-interview-question":
31
  model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
32
  tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
33
+ # descriptions = "Reverse interview question is a model that..."
34
 
35
  inputs = tok(context, return_tensors="pt")
36
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
 
39
  for i in range(4):
40
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
41
 
42
+ return final_output
43
 
44
  iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], examples=examples, description=descriptions, outputs="text")
45
  iface.launch()