calvpang commited on
Commit
a14686b
·
1 Parent(s): 812a24d

Trying WasuratS' code

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -12,25 +12,22 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
-
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
- return outputs["text"]
27
-
28
-
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
- # Reducing the input length to 600
32
- inputs = inputs["input_ids"][:600]
33
- speech = model.generate_speech(inputs.to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
  return speech.cpu()
35
 
36
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl")
16
+ model = SpeechT5ForTextToSpeech.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl").to(device)
 
17
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
18
 
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
21
 
 
22
  def translate(audio):
23
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
24
+ return outputs['text']
25
+
 
26
  def synthesise(text):
27
  inputs = processor(text=text, return_tensors="pt")
28
+ input_ids = inputs["input_ids"]
29
+ input_ids = input_ids[0:1, :200]
30
+ speech = model.generate_speech(input_ids.to(device), speaker_embeddings.to(device), vocoder=vocoder)
31
  return speech.cpu()
32
 
33