Trying WasuratS' code
Browse files
app.py
CHANGED
@@ -12,25 +12,22 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
-
|
24 |
def translate(audio):
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
26 |
-
return outputs[
|
27 |
-
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
|
32 |
-
|
33 |
-
speech = model.generate_speech(
|
34 |
return speech.cpu()
|
35 |
|
36 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl")
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl").to(device)
|
|
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
|
|
22 |
def translate(audio):
|
23 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
24 |
+
return outputs['text']
|
25 |
+
|
|
|
26 |
def synthesise(text):
|
27 |
inputs = processor(text=text, return_tensors="pt")
|
28 |
+
input_ids = inputs["input_ids"]
|
29 |
+
input_ids = input_ids[0:1, :200]
|
30 |
+
speech = model.generate_speech(input_ids.to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
31 |
return speech.cpu()
|
32 |
|
33 |
|