Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Define a function to transcribe audio from the microphone
|
8 |
-
def transcribe_audio(audio):
|
9 |
-
# Perform transcription
|
10 |
-
transcription = model.transcribe([audio])[0]
|
11 |
return transcription
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
outputs = gr.outputs.Textbox(label="Transcription")
|
16 |
-
title = "Speech-to-Text Transcription"
|
17 |
-
description = "Transcribe speech from the microphone using the NeMo Canary ASR model."
|
18 |
-
interface = gr.Interface(transcribe_audio, inputs, outputs, title=title, description=description)
|
19 |
|
20 |
-
|
21 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
|
6 |
+
transformer = transformers.Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
7 |
+
processor = transformers.Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
8 |
+
|
9 |
+
def speech_to_text(audio):
|
10 |
+
# Convert audio to torch tensor
|
11 |
+
waveform, _ = torchaudio.load(audio.name)
|
12 |
+
input_values = processor(waveform, return_tensors="pt").input_values
|
13 |
+
|
14 |
+
# Perform inference
|
15 |
+
logits = transformer(input_values).logits
|
16 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
17 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
18 |
|
|
|
|
|
|
|
|
|
19 |
return transcription
|
20 |
|
21 |
+
audio_input = gr.inputs.Audio(source="microphone", type="file", label="Record your voice:")
|
22 |
+
text_output = gr.outputs.Text(label="Transcription")
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=text_output, title="Speech-to-Text").launch(inline=True)
|
|