Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, VitsTokenizer, VitsModel, set_seed | |
import numpy as np | |
import torch | |
import io | |
import soundfile as sf | |
# Initialize ASR pipeline | |
transcriber = pipeline("automatic-speech-recognition", model="facebook/s2t-small-librispeech-asr") | |
# Initialize LLM pipeline | |
generator = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True) | |
# Initialize TTS tokenizer and model | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") | |
model = VitsModel.from_pretrained("facebook/mms-tts-eng") | |
def transcribe_generate_and_speak(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
# Transcribe audio | |
asr_output = transcriber({"sampling_rate": sr, "raw": y})["text"] | |
# Generate text based on ASR output | |
generated_text = generator(asr_output, max_length=100, num_return_sequences=1)[0]['generated_text'] | |
# Generate audio from text | |
inputs = tokenizer(text=generated_text, return_tensors="pt") | |
set_seed(555) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
waveform = outputs.waveform[0] | |
waveform_path = "output.wav" | |
sf.write(waveform_path, waveform.numpy(), 16000, format='wav') | |
return waveform_path | |
# Define Gradio interface | |
audio_input = gr.Interface( | |
transcribe_generate_and_speak, | |
gr.Audio(sources=["microphone"], label="Speak Here"), | |
"audio", | |
title="ASR -> LLM -> TTS", | |
description="Speak into the microphone and hear the generated audio." | |
) | |
# Launch the interface | |
audio_input.launch() |