Spaces:
Sleeping
Sleeping
File size: 11,886 Bytes
f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 f745baf 3966ab6 f745baf 3966ab6 26197e0 3966ab6 f745baf 3966ab6 f745baf 26197e0 f745baf 26197e0 f745baf 26197e0 3966ab6 f745baf 26197e0 f745baf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import base64
import json
import os
import requests
import anthropic
import openai
from dotenv import load_dotenv
from pathlib import Path
from llama_parse import LlamaParse
from llama_index.core import SimpleDirectoryReader
from unstructured.partition.auto import partition
from preprocessors.preprocessor import PdfPreprocessor
from postprocessors.postprocessor import ClaudePostprocessor, GPTPostprocessor
load_dotenv()
class Model:
BASE_URL: str | None = None
API_KEY: str | None = None
MODEL: str | None = None
REQUIRES_OPENAI: bool = False
REQUIRES_ANTHROPIC: bool = False
PROMPT: str = "Convert these images to markdown"
def __init_subclass__(cls) -> None:
"""Initialize subclass."""
super().__init_subclass__()
def __init__(self):
if self.REQUIRES_OPENAI:
if not self.API_KEY:
raise ValueError("Model api key is not provided")
if not self.MODEL:
raise ValueError("Model name is not provided")
if self.BASE_URL:
self._client = openai.OpenAI(
base_url=self.BASE_URL,
api_key=self.API_KEY,
)
else:
self._client = openai.OpenAI(api_key=self.API_KEY)
elif self.REQUIRES_ANTHROPIC:
if not self.API_KEY:
raise ValueError("Model api key is not provided")
if not self.MODEL:
raise ValueError("Model name is not provided")
self._client = anthropic.Anthropic(
api_key=self.API_KEY,
)
def run(self, file_path: str) -> str:
"""Extract model.
Args:
file_path: path to file to extract
Returns:
str: output markdown
"""
raise NotImplementedError("Model extract method is not implemented")
class CambioVQA0713(Model):
BASE_URL = "http://44.242.239.38:8000/v1"
API_KEY = "Cambioml2024!"
MODEL = "cambiollm-dust-preview-0713"
REQUIRES_OPENAI = True
USE_BEAM_SEARCH = True
def __init__(self):
"""Init."""
super().__init__()
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
try:
pdf_preprocessor = PdfPreprocessor()
file_contents = pdf_preprocessor.run(file_path)
contents = []
for content in file_contents:
contents.append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{content}",
},
},)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Convert this image to markdown\nOutput figures\nOutput charts\nOutput tables\nOutput footnotes\nOutput headers\nOutput footers\nOutput page nums",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{file_contents[0]}",
},
},
],
}
]
print('Cambio Model - ready to run: ', json.dumps(messages[0])[:200])
if self.USE_BEAM_SEARCH:
response = self._client.chat.completions.create(
model=self.MODEL,
messages=messages,
top_p=1,
temperature=0,
extra_body={
"top_k": -1,
"use_beam_search": True,
"best_of": 2,
},
)
else:
response = self._client.chat.completions.create(
model=self.MODEL,
messages=messages,
max_tokens=1024,
temperature=0.3,
top_p=0.7,
extra_body={
"top_k": 20,
},
)
print('Cambio Model - response: ', response.choices[0].message.content)
return response.choices[0].message.content
except Exception as e:
print(f"Error processing input: {str(e)}")
return f"Error processing with CambioVQA0713: {str(e)}"
class AnyParserModel(Model):
BASE_URL = "https://k7u1c342dc.execute-api.us-west-2.amazonaws.com/v1/extract"
API_KEY = os.getenv('ANYPARSER_RT_API_KEY')
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
file_extension = Path(file_path).suffix.lower().lstrip(".")
# Check if the file exists
if not Path(file_path).is_file():
return "Error: File does not exist", "File does not exist"
if file_extension in ["pdf", "docx"]:
# Encode the PDF file content in base64
with open(file_path, "rb") as file:
encoded_file = base64.b64encode(file.read()).decode("utf-8")
else:
return "Error: Unsupported file type", "Unsupported file type"
# Create the JSON payload
payload = {
"file_content": encoded_file,
"file_type": file_extension,
}
# Set the headers
headers = {
"Content-Type": "application/json",
"x-api-key": self.API_KEY,
}
# Send the POST request
response = requests.post(
self.BASE_URL, headers=headers, data=json.dumps(payload), timeout=30
)
# Check if the request was successful
if response.status_code == 200:
try:
response_data = response.json()
response_list = []
for text in response_data["markdown"]:
response_list.append(text)
markdown_text = "\n".join(response_list)
return markdown_text
except json.JSONDecodeError:
return "Error: Invalid JSON response", f"Response: {response.text}"
else:
return f"Error: {response.status_code}", f"Response: {response.text}"
class LlamaParseModel(Model):
BASE_URL = None
API_KEY = os.getenv('LLAMA_CLOUD_API_KEY')
def __init__(self):
"""Init."""
super().__init__()
if not self.API_KEY:
raise ValueError("The API key is required. Please set the LLAMA_CLOUD_API_KEY environment variable.")
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
try:
parser = LlamaParse(
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
markdown = "\n\n".join([doc.text for doc in documents])
return markdown
except Exception as e:
print(f"Error processing input: {str(e)}")
return f"Error processing with LlamaParse: {str(e)}"
class UnstructuredModel(Model):
BASE_URL = None
API_KEY = None
def __init__(self):
"""Init."""
super().__init__()
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
try:
elements = partition(file_path)
# Combine the elements into a single string
parsed_text = "\n".join(element.text for element in elements if element.text)
# Handle case where no content is parsed
markdown = parsed_text if parsed_text else "No content parsed"
return markdown
except Exception as e:
return f"Error processing UnstructuredModel: {str(e)}"
class GPTModel(Model):
BASE_URL = None
API_KEY = os.getenv("OPENAI_API_KEY")
MODEL = "gpt-4o-mini"
REQUIRES_OPENAI = True
def __init__(self):
"""Init."""
super().__init__()
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
try:
pdf_preprocessor = PdfPreprocessor()
gpt_postprocessor = GPTPostprocessor()
file_contents = pdf_preprocessor.run(file_path)
contents = []
for content in file_contents:
contents.append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{content}",
},
})
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": self.PROMPT},
*contents,
],
}
]
response = self._client.chat.completions.create(
model=self.MODEL,
messages=messages,
)
return gpt_postprocessor.run(response.choices[0].message.content)
except Exception as e:
print(f"Error processing input: {str(e)}")
return f"Error processing with GPTModel: {str(e)}"
class ClaudeModel(Model):
BASE_URL = "http://103.114.163.134:3000/v1/"
API_KEY = os.getenv("ANTHROPIC_API_KEY")
MODEL = "claude-3-5-sonnet-20240620"
REQUIRES_ANTHROPIC = True
def __init__(self):
"""Init."""
super().__init__()
def run(self, file_path: str) -> str:
"""Extract data in real-time.
Args:
file_path (str): The path to the file to be parsed.
Returns:
str: The extracted data.
"""
try:
prompt = self.PROMPT
pdf_preprocessor = PdfPreprocessor()
claude_postprocessor = ClaudePostprocessor()
file_contents = pdf_preprocessor.run(file_path)
contents = []
for content in file_contents:
contents.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": content,
}
})
messages = [
{"role": "user", "content": [
{"type": "text", "text": prompt},
*contents,
]}
]
response = self._client.messages.create(
model="claude-3-5-sonnet-20240620", max_tokens=1024, messages=messages
)
print('-----------\n\n***Anthropic Response:\n\n ', response.content[0].text)
return claude_postprocessor.run(response.content[0].text)
except Exception as e:
return f"Error processing ClaudeModel: {str(e)}"
|